
DiffusionRank: A Possible Penicillin for Web Spamming

Haixuan Yang, Irwin King, and Michael R. Lyu
Dept. of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, NT, Hong Kong

{hxyang,king,lyu}@cse.cuhk.edu.hk

ABSTRACT
While the PageRank algorithm has proven to be very effec-
tive for ranking Web pages, the rank scores of Web pages
can be manipulated. To handle the manipulation problem
and to cast a new insight on the Web structure, we propose
a ranking algorithm called DiffusionRank. DiffusionRank is
motivated by the heat diffusion phenomena, which can be
connected to Web ranking because the activities flow on the
Web can be imagined as heat flow, the link from a page to
another can be treated as the pipe of an air-conditioner, and
heat flow can embody the structure of the underlying Web
graph. Theoretically we show that DiffusionRank can serve
as a generalization of PageRank when the heat diffusion co-
efficient γ tends to infinity. In such a case 1/γ = 0, Diffu-
sionRank (PageRank) has low ability of anti-manipulation.
When γ = 0, DiffusionRank obtains the highest ability of
anti-manipulation, but in such a case, the web structure is
completely ignored. Consequently, γ is an interesting factor
that can control the balance between the ability of preserv-
ing the original Web and the ability of reducing the effect
of manipulation. It is found empirically that, when γ = 1,
DiffusionRank has a Penicillin-like effect on the link ma-
nipulation. Moreover, DiffusionRank can be employed to
find group-to-group relations on the Web, to divide the Web
graph into several parts, and to find link communities. Ex-
perimental results show that the DiffusionRank algorithm
achieves the above mentioned advantages as expected.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Systems]: Information Search and Retrieval; G2.2
[Discrete Mathematics]: Graph Theory

General Terms: Algorithms.

Keywords: Random Graph, PageRank, DiffusionRank

1. INTRODUCTION
While the PageRank algorithm [13] has proven to be very

effective for ranking Web pages, inaccurate PageRank re-
sults are induced because of web page manipulations by peo-
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ple for commercial interests. The manipulation problem is
also called the Web spam, which refers to hyperlinked pages
on the World Wide Web that are created with the intention
of misleading search engines [7]. It is reported that approx-
imately 70% of all pages in the .biz domain and about 35%
of the pages in the .us domain belong to the spam category
[12]. The reason for the increasing amount of Web spam is
explained in [12]: some web site operators try to influence
the positioning of their pages within search results because
of the large fraction of web traffic originating from searches
and the high potential monetary value of this traffic.

From the viewpoint of the Web site operators who want
to increase the ranking value of a particular page for search
engines, Keyword Stuffing and Link Stuffing are being used
widely [7, 12]. From the viewpoint of the search engine man-
agers, the Web spam is very harmful to the users’ evaluations
and thus their preference to choosing search engines because
people believe that a good search engine should not return
irrelevant or low-quality results. There are two methods be-
ing employed to combat the Web spam problem. Machine
learning methods are employed to handle the keyword stuff-
ing. To successfully apply machine learning methods, we
need to dig out some useful textual features for Web pages,
to mark part of the Web pages as either spam or non-spam,
then to apply supervised learning techniques to mark other
pages. For example, see [5, 12]. Link analysis methods are
also employed to handle the link stuffing problem. One ex-
ample is the TrustRank [7], a link-based method, in which
the link structure is utilized so that human labelled trusted
pages can propagate their trust scores trough their links.
This paper focuses on the link-based method.

The rest of the materials are organized as follows. In the
next section, we give a brief literature review on various
related ranking techniques. We establish the Heat Diffusion
Model (HDM) on various cases in Section 3, and propose
DiffusionRank in Section 4. In Section 5, we describe the
data sets that we worked on and the experimental results.
Finally, we draw conclusions in Section 6.

2. LITERATURE REVIEW
The importance of a Web page is determined by either

the textual content of pages or the hyperlink structure or
both. As in previous work [7, 13], we focus on ranking
methods solely determined by hyperlink structure of the
Web graph. All the mentioned ranking algorithms are estab-
lished on a graph. For our convenience, we first give some
notations. Denote a static graph by G = (V, E), where V =
{v1, v2, . . . , vn}, E = {(vi, vj) | there is an edge from vi to
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vj}. Ii and di denote the in-degree and the out-degree of
page i respectively.

2.1 PageRank
The importance of a Web page is an inherently subjective

matter, which depends on the reader’s interests, knowledge
and attitudes [13]. However, the average importance of all
readers can be considered as an objective matter. PageRank
tries to find such average importance based on the Web link
structure, which is considered to contain a large amount of
statistical data. The Web is modelled by a directed graph G
in the PageRank algorithms, and the rank or “importance”
xi for page vi ∈ V is defined recursively in terms of pages
which point to it: xi =

P
(j,i)∈E aijxj , where aij is assumed

to be 1/dj if there is a link from j to i, and 0 otherwise. Or
in matrix terms, x = Ax. When the concept of “random
jump” is introduced, the matrix form is changed to

x = [(1− α)g1T + αA]x, (1)

where α is the probability of following the actual link from a
page, (1−α) is the probability of taking a “random jump”,
and g is a stochastic vector, i.e., 1T g = 1. Typically, α =
0.85, and g = 1

n
1 is one of the standard settings, where 1 is

the vector of all ones [6, 13].

2.2 TrustRank
TrustRank [7] is composed of two parts. The first part

is the seed selection algorithm, in which the inverse PageR-
ank was proposed to help an expert of determining a good
node. The second part is to utilize the biased PageRank,
in which the stochastic distribution g is set to be shared by
all the trusted pages found in the first part. Moreover, the
initial input of x is also set to be g. The justification for
the inverse PageRank and the solid experiments support its
advantage in combating the Web spam. Although there are
many variations of PageRank, e.g., a family of link-based
ranking algorithms in [2], TrustRank is especially chosen for
comparisons for three reasonss: (1) it is designed for com-
batting spamming; (2) its fixed parameters make a compar-
ison easy; and (3) it has a strong theoretical relations with
PageRank and DiffusionRank.

2.3 Manifold Ranking
In [17], the idea of ranking on the data manifolds was pro-

posed. The data points represented as vectors in Euclidean
space are considered to be drawn from a manifold. From
the data points on such a manifold, an undirected weighted
graph is created, then the weight matrix is given by the
Gaussian Kernel smoothing. While the manifold ranking
algorithm achieves an impressive result on ranking images,
the biased vector g and the parameter k in the general per-
sonalized PageRank in [17] are unknown in the Web graph
setting; therefore we do not include it in the comparisons.

2.4 Heat Diffusion
Heat diffusion is a physical phenomena. In a medium,

heat always flow from position with high temperature to
position with low temperature. Heat kernel is used to de-
scribe the amount of heat that one point receives from an-
other point. Recently, the idea of heat kernel on a manifold
is borrowed in applications such as dimension reduction [3]
and classification [9, 10, 14]. In these work, the input data
is considered to lie in a special structure.

All the above topics are related to our work. The readers
can find that our model is a generalization of PageRank in
order to resist Web manipulation, that we inherit the first
part of TrustRank, that we borrow the concept of ranking on
the manifold to introduce our model, and that heat diffusion
is a main scheme in this paper.

3. HEAT DIFFUSION MODEL
Heat diffusion provides us with another perspective about

how we can view the Web and also a way to calculate rank-
ing values. In this paper, the Web pages are considered to
be drawn from an unknown manifold, and the link structure
forms a directed graph, which is considered as an approxima-
tion to the unknown manifold. The heat kernel established
on the Web graph is considered as the representation of the
relationship between Web pages. The temperature distribu-
tion after a fixed time period, induced by a special initial
temperature distribution, is considered as the rank scores on
the Web pages. Before establishing the proposed models, we
first show our motivations.

3.1 Motivations
There are two points to explain that PageRank is suscep-

tible to web spam.

• Over-democratic. There is a belief behind PageR-
ank—all pages are born equal. This can be seen from
the equal voting ability of one page: the sum of each
column is equal to one. This equal voting ability of all
pages gives the chance for a Web site operator to in-
crease a manipulated page by creating a large number
of new pages pointing to this page since all the newly
created pages can obtain an equal voting right.

• Input-independent. For any given non-zero initial
input, the iteration will converge to the same stable
distribution corresponding to the maximum eigenvalue
1 of the transition matrix. This input-independent
property makes it impossible to set a special initial in-
put (larger values for trusted pages and less values even
negative values for spam pages) to avoid web spam.

The input-independent feature of PageRank can be further
explained as follows. P = [(1 − α)g1T + αA] is a positive
stochastic matrix if g is set to be a positive stochastic vector
(the uniform distribution is one of such settings), and so the
largest eigenvalue is 1 and no other eigenvalue whose abso-
lute value is equal to 1, which is guaranteed by the Perron
Theorem [11]. Let y be the eigenvector corresponding to 1,
then we have Py = y. Let {xk} be the sequence generated
from the iterations xk+1 = Pxk, and x0 is the initial input.
If {xk} converges to x, then xk+1 = Pxk implies that x
must satisfy Px = x. Since the only maximum eigenvalue
is 1, we have x = cy where c is a constant, and if both x
and y are normalized by their sums, then c = 1. The above
discussions show that PageRank is independent of the initial
input x0.

In our opinion, g and α are objective parameters deter-
mined by the users’ behaviors and preferences. A, α and
g are the “true” web structure. While A is obtained by a
crawler and the setting α = 0.85 is accepted by the people,
we think that g should be determined by a user behavior
investigation, something like [1]. Without any prior knowl-
edge, g has to be set as g = 1

n
1.
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TrustRank model does not follow the “true” web structure
by setting a biased g, but the effects of combatting spam-
ming are achieved in [7]; PageRank is on the contrary in
some ways. We expect a ranking algorithm that has an ef-
fect of anti-manipulation as TrustRank while respecting the
“true” web structure as PageRank.

We observe that the heat diffusion model is a natural way
to avoid the over-democratic and input-independent feature
of PageRank. Since heat always flows from a position with
higher temperatures to one with lower temperatures, points
are not equal as some points are born with high tempera-
tures while others are born with low temperatures. On the
other hand, different initial temperature distributions will
give rise to different temperature distributions after a fixed
time period. Based on these considerations, we propose the
novel DiffusionRank. This ranking algorithm is also mo-
tivated by the viewpoint for the Web structure. We view
all the Web pages as points drawn from a highly complex
geometric structure, like a manifold in a high dimensional
space. On a manifold, heat can flow from one point to an-
other through the underlying geometric structure in a given
time period. Different geometric structures determine dif-
ferent heat diffusion behaviors, and conversely the diffusion
behavior can reflect the geometric structure. More specif-
ically, on the manifold, the heat flows from one point to
another point, and in a given time period, if one point x
receives a large amount of heat from another point y, we
can say x and y are well connected, and thus x and y have
a high similarity in the sense of a high mutual connection.

We note that on a point with unit mass, the temperature
and the heat of this point are equivalent, and these two terms
are interchangeable in this paper. In the following, we first
show the HDM on a manifold, which is the origin of HDM,
but cannot be employed to the World Wide Web directly,
and so is considered as the ideal case. To connect the ideal
case and the practical case, we then establish HDM on a
graph as an intermediate case. To model the real world
problem, we further build HDM on a random graph as a
practical case. Finally we demonstrate the DiffusionRank
which is derived from the HDM on a random graph.

3.2 Heat Flow On a Known Manifold
If the underlying manifold is known, the heat flow through-

out a geometric manifold with initial conditions can be de-
scribed by the following second order differential equation:
∂f(x,t)

∂t
−∆f(x, t) = 0, where f(x, t) is the heat at location x

at time t, and ∆f is the Laplace-Beltrami operator on a func-
tion f . The heat diffusion kernel Kt(x,y) is a special solu-
tion to the heat equation with a special initial condition—a
unit heat source at position y when there is no heat in other
positions. Based on this, the heat kernel Kt(x,y) describes
the heat distribution at time t diffusing from the initial unit
heat source at position y, and thus describes the connectiv-
ity (which is considered as a kind of similarity) between x
and y. However, it is very difficult to represent the World
Wide Web as a regular geometry with a known dimension;
even the underlying is known, it is very difficult to find the
heat kernel Kt(x,y), which involves solving the heat equa-
tion with the delta function as the initial condition. This
motivates us to investigate the heat flow on a graph. The
graph is considered as an approximation to the underlying
manifold, and so the heat flow on the graph is considered as
an approximation to the heat flow on the manifold.

3.3 On an Undirected Graph
On an undirected graph G, the edge (vi, vj) is considered

as a pipe that connects nodes vi and vj . The value fi(t)
describes the heat at node vi at time t, beginning from an
initial distribution of heat given by fi(0) at time zero. f(t)
(f(0)) denotes the vector consisting of fi(t) (fi(0)).

We construct our model as follows. Suppose, at time t,
each node i receives M(i, j, t, ∆t) amount of heat from its
neighbor j during a period of ∆t. The heat M(i, j, t, ∆t)
should be proportional to the time period ∆t and the heat
difference fj(t)− fi(t). Moreover, the heat flows from node
j to node i through the pipe that connects nodes i and j.
Based on this consideration, we assume that M(i, j, t, ∆t) =
γ(fj(t) − fi(t))∆t. As a result, the heat difference at node
i between time t + ∆t and time t will be equal to the sum
of the heat that it receives from all its neighbors. This is
formulated as

fi(t + ∆t)− fi(t) =
X

j:(j,i)∈E

γ(fj(t)− fi(t))∆t, (2)

where E is the set of edges. To find a closed form solution
to Eq. (2), we express it in a matrix form: (f(t + ∆t) −
f(t))/∆t = γHf(t), where d(v) denotes the degree of the
node v. In the limit ∆t → 0, it becomes d

dt
f(t) = γHf(t).

Solving it, we obtain f(t) = eγtHf(0), especially we have

f(1) = eγHf(0), Hij =

8
<
:
−d(vj), j = i,
1, (vj , vi) ∈ E,
0, otherwise,

(3)

where eγH is defined as eγH = I+γH+ γ2

2!
H2 + γ3

3!
H3 + · · · .

3.4 On a Directed Graph
The above heat diffusion model must be modified to fit the

situation where the links between Web pages are directed.
On one Web page, when the page-maker creates a link (a, b)
to another page b, he actually forces the energy flow, for
example, people’s click-through activities, to that page, and
so there is added energy imposed on the link. As a result,
heat flows in a one-way manner, only from a to b, not from
b to a. Based on such consideration, we modified the heat
diffusion model on an undirected graph as follows.

On a directed graph G, the pipe (vi, vj) is forced by added
energy such that heat flows only from vi to vj . Suppose, at
time t, each node vi receives RH = RH(i, j, t, ∆t) amount of
heat from vj during a period of ∆t. We have three assump-
tions: (1) RH should be proportional to the time period ∆t;
(2) RH should be proportional to the the heat at node vj ;
and (3) RH is zero if there is no link from vj to vi. As a
result, vi will receive

P
j:(vj ,vi)∈E σjfj(t)∆t amount of heat

from all its neighbors that points to it.
On the other hand, node vi diffuses DH(i, t, ∆t) amount

of heat to its subsequent nodes. We assume that: (1) The
heat DH(i, t, ∆t) should be proportional to the time period
∆t. (2) The heat DH(i, t, ∆t) should be proportional to the
the heat at node vi. (3) Each node has the same ability of
diffusing heat. This fits the intuition that a Web surfer only
has one choice to find the next page that he wants to browse.
(4) The heat DH(i, t, ∆t) should be uniformly distributed
to its subsequent nodes. The real situation is more complex
than what we assume, but we have to make this simple as-
sumption in order to make our model concise. As a result,
node vi will diffuse γfi(t)∆t/di amount of heat to any of its
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subsequent nodes, and each of its subsequent node should
receive γfi(t)∆t/di amount of heat. Therefore σj = γ/dj .
To sum up, the heat difference at node vi between time
t+∆t and time t will be equal to the sum of the heat that it
receives, deducted by what it diffuses. This is formulated as
fi(t + ∆t) − fi(t) = −γfi(t)∆t +

P
j:(vj ,vi)∈E γ/djfj(t)∆t.

Similarly, we obtain

f(1) = eγHf(0), Hij =

8
<
:
−1, j = i,
1/dj , (vj , vi) ∈ E,
0, otherwise.

(4)

3.5 On a Random Directed Graph
For real world applications, we have to consider random

edges. This can be seen in two viewpoints. The first one
is that in Eq. (1), the Web graph is actually modelled as
a random graph, there is an edge from node vi to node vj

with a probability of (1 − α)gj (see the item (1 − α)g1T ),
and that the Web graph is predicted by a random graph
[15, 16]. The second one is that the Web structure is a
random graph in essence if we consider the content similarity
between two pages, though this is not done in this paper.
For these reasons, the model would become more flexible if
we extend it to random graphs. The definition of a random
graph is given below.

Definition 1. A random graph RG = (V,P = (pij)) is
defined as a graph with a vertex set V in which the edges are
chosen independently, and for 1 ≤ i, j ≤ |V | the probability
of (vi, vj) being an edge is exactly pij.

The original definition of random graphs in [4], is changed
slightly to consider the situation of directed graphs. Note
that every static graph can be considered as a special ran-
dom graph in the sense that pij can only be 0 or 1.

On a random graph RG = (V,P), where P = (pij) is
the probability of the edge (vi, vj) exists. In such a random
graph, the expected heat difference at node i between time
t + ∆t and time t will be equal to the sum of the expected
heat that it receives from all its antecedents, deducted by
the expected heat that it diffuses.

Since the probability of the link (vj , vi) is pji, the ex-
pected heat flow from node j to node i should be multiplied
by pji, and so we have fi(t + ∆t) − fi(t) = −γ fi(t)∆t +P

j:(vj ,vi)∈E γpjifj(t)∆t/RD+(vj), where RD+(vi) is the ex-

pected out-degree of node vi, it is defined as
P

k pik. Simi-
larly we have

f(1) = eγRf(0), Rij =

8
<
:
−1, j = i;

pji/RD+(vj), j 6= i.
(5)

When the graph is large, a direct computation of eγR is
time-consuming, and we adopt its discrete approximation:

f(1) = (I +
γ

N
R)N f(0). (6)

The matrix (I+ γ
N

R)N in Eq. (6) and matrix eγR in Eq. (5)
are called Discrete Diffusion Kernel and the Continuous
Diffusion Kernel respectively. Based on the Heat Diffusion
Models and their solutions, DiffusionRank can be estab-
lished on undirected graphs, directed graphs, and random
graphs. In the next section, we mainly focus on Diffusion-
Rank in the random graph setting.

4. DIFFUSIONRANK
For a random graph, the matrix (I + γ

N
R)N or eγR can

measure the similarity relationship between nodes. Let fi(0)=
1, fj(0) = 0 if j 6= i, then the vector f(0) represent the unit
heat at node vi while all other nodes has zero heat. For such
f(0) in a random graph, we can find the heat distribution
at time 1 by using Eq. (5) or Eq. (6). The heat distribu-
tion is exactly the i−th row of the matrix of (I + γ

N
R)N or

eγR. So the ith-row jth-column element hij in the matrix
(I + γ∆tR)N or eγR means the amount of heat that vi can
receive from vj from time 0 to 1. Thus the value hij can be
used to measure the similarity from vj to vi. For a static
graph, similarly the matrix (I + γ

N
H)N or eγH can measure

the similarity relationship between nodes.
The intuition behind is that the amount h(i, j) of heat

that a page vi receives from a unit heat in a page vj in a
unit time embodies the extent of the link connections from
page vj to page vi. Roughly speaking, when there are more
uncrossed paths from vj to vi, vi will receive more heat from
vj ; when the path length from vj to vi is shorter, vi will
receive more heat from vj ; and when the pipe connecting
vj and vi is wide, the heat will flow quickly. The final heat
that vi receives will depend on various paths from vj to vi,
their length, and the width of the pipes.

Algorithm 1 DiffusionRank Function

Input: The transition matrix A; the inverse transition ma-
trix U; the decay factor αI for the inverse PageRank; the
decay factor αB for PageRank; number of iterations MI for
the inverse PageRank; the number of trusted pages L; the
thermal conductivity coefficient γ.
Output: DiffusionRank score vector h.

1: s = 1
2: for i = 1 TO MI do
3: s = αI ·U · s + (1− αI) · 1

n
· 1

4: end for
5: Sort s in a decreasing order: π = Rank({1, . . . , n}, s)
6: d = 0, Count = 0, i = 0
7: while Count ≤ L do
8: if π(i) is evaluated as a trusted page then
9: d(π(i)) = 1, Count + +

10: end if
11: i + +
12: end while
13: d = d/|d|
14: h = d
15: Find the iteration number MB according to λ
16: for i = 1 TO MB do
17: h = (1− γ

MB
)h + γ

MB
(αB ·A · h + (1− αB) · 1

n
· 1)

18: end for
19: RETURN h

4.1 Algorithm
For the ranking task, we adopt the heat kernel on a ran-

dom graph. Formally the DiffusionRank is described in Al-
gorithm 1, in which,the element Uij in the inverse transition
matrix U is defined to be 1/Ij if there is a link from i to j,
and 0 otherwise. This trusted pages selection procedure by
inverse PageRank is completely borrowed from TrustRank
[7] except for a fix number of the size of the trusted set.
Although the inverse PageRank is not perfect in its abil-
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ity of determining the maximum coverage, it is appealing
because of its polynomial execution time and its reason-
able intuition—we actually inverse the original link when
we try to build the seed set from those pages that point
to many pages that in turn point to many pages and so
on. In the algorithm, the underlying random graph is set as
P = αB ·A + (1 − αB) · 1

n
· 1n×n, which is induced by the

Web graph. As a result, R = −I + P.
In fact, the more general setting for DiffusionRank is P =

αB ·A+(1−αB) · 1
n
·g ·1T . By such a setting, DiffusionRank

is a generalization of TrustRank when γ tends to infinity
and when g is set in the same way as TrustRank. However,
the second part of TrustRank is not adopted by us. In our
model, g should be the true “teleportation” determined by
the user’s browse habits, popularity distribution over all the
Web pages, and so on; P should be the true model of the
random nature of the World Wide Web. Setting g according
to the trusted pages will not be consistent with the basic idea
of Heat Diffusion on a random graph. We simply set g = 1
only because we cannot find it without any priori knowledge.

Remark. In a social network interpretation, Diffusion-
Rank first recognizes a group of trusted people, who may
not be highly ranked, but they know many other people.
The initially trusted people are endowed with the power to
decide who can be further trusted, but cannot decide the
final voting results, and so they are not dictators.

4.2 Advantages
Next we show the four advantages for DiffusionRank.

4.2.1 Two closed forms
First, its solutions have two forms, both of which are

closed form. One takes the discrete form, and has the advan-
tage of fast computing while the other takes the continuous
form, and has the advantage of being easily analyzed in the-
oretical aspects. The theoretical advantage has been shown
in the proof of theorem in the next section.

(a) Group to Group Relations (b) An undirected graph

Figure 1: Two graphs

4.2.2 Group-group relations
Second, it can be naturally employed to detect the group-

group relation. For example, let G2 and G1 denote two
groups, containing pages (j1, j2, . . . , js) and (i1, i2, . . . , it),
respectively. Then

P
u,v hiu,jv is the total amounts of heat

that G1 receives from G2, where hiu,jv is the iu−th row
jv−th column element of the heat kernel. More specifically,

we need to first set f(0) for such an application as follows.
In f(0) = (f1(0), f2(0), . . . , fn(0))T , if i ∈ {j1, j2, . . . , js},
then fi(0) = 1, and 0 otherwise. Then we employ Eq. (5)
to calculate f(1) = (f1(1), f2(1), . . . , fn(1))T , finally we sum
those fj(1) where j ∈ {i1, i2, . . . , it}. Fig. 1 (a) shows the
results generated by the DiffusionRank. We consider five
groups—five departments in our Engineering Faculty: CSE,
MAE, EE, IE, and SE. γ is set to be 1, the numbers in
Fig. 1 (a) are the amount of heat that they diffuse to each
other. These results are normalized by the total number of
each group, and the edges are ignored if the values are less
than 0.000001. The group-to-group relations are therefore
detected, for example, we can see that the most strong over-
all tie is from EE to IE. While it is a natural application
for DiffusionRank because of the easy interpretation by the
amount heat from one group to another group, it is difficult
to apply other ranking techniques to such an application
because they lack such a physical meaning.

4.2.3 Graph cut
Third, it can be used to partition the Web graph into

several parts. A quick example is shown below. The graph
in Fig. 1 (b) is an undirected graph, and so we employ the
Eq. (3). If we know that node 1 belongs to one commu-
nity and that node 12 belongs to another community, then
we can put one unit positive heat source on node 1 and
one unit negative heat source on node 12. After time 1, if
we set γ = 0.5, the heat distribution is [0.25, 0.16, 0.17,
0.16, 0.15, 0.09, 0.01, -0.04, -0.18 -0.21, -0.21, -0.34], and if
we set γ = 1, it will be [0.17, 0.16, 0.17, 0.16, 0.16, 0.12,
0.02, -0.07, -0.18, -0.22, -0.24, -0.24]. In both settings, we
can easily divide the graph into two parts: {1, 2, 3, 4, 5, 6, 7}
with positive temperatures and {8, 9, 10, 11, 12} with nega-
tive temperatures. For directed graphs and random graphs,
similarly we can cut them by employing corresponding heat
solution.

4.2.4 Anti-manipulation
Fourth, it can be used to combat manipulation. Let G2

contain trusted Web pages (j1, j2, . . . , js), then for each page
i,
P

v hi,jv is the heat that page i receives from G2, and can
be computed by the discrete approximation of Eq. (4) in
the case of a static graph or Eq. (6) in the case of a random
graph, in which f(0) is set to be a special initial heat distri-
bution so that the trusted Web pages have unit heat while
all the others have zero heat. In doing so, manipulated Web
page will get a lower rank unless it has strong in-links from
the trusted Web pages directly or indirectly. The situation
is quite different for PageRank because PageRank is input-
independent as we have shown in Section 3.1. Based on the
fact that the connection from a trusted page to a “bad” page
should be weak–less uncross paths, longer distance and nar-
rower pipe, we can say DiffusionRank can resist web spam if
we can select trusted pages. It is fortunate that the trusted
pages selection method in [7]–the first part of TrustRank can
help us to fulfill this task. For such an application of Dif-
fusionRank, the computation complexity for Discrete Diffu-
sion Kernel is the same as that for PageRank in cases of
both a static graph and a random graph. This can be seen
in Eq. (6), by which we need N iterations and for each iter-
ation we need a multiplication operation between a matrix
and a vector, while in Eq. (1) we also need a multiplication
operation between a matrix and a vector for each iteration.
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4.3 The Physical Meaning of γ
γ plays an important role in the anti-manipulation effect

of DiffusionRank. γ is the thermal conductivity–the heat
diffusion coefficient. If it has a high value, heat will dif-
fuse very quickly. Conversely, if it is small, heat will diffuse
slowly. In the extreme case, if it is infinitely large, then heat
will diffuse from one node to other nodes immediately, and
this is exactly the case corresponding to PageRank. Next,
we will interpret it mathematically.

Theorem 1. When γ tends to infinity and f(0) is not the
zero vector, eγRf(0) is proportional to the stable distribution
produced by PageRank.

Let g = 1
n
1. By the Perron Theorem [11], we have shown

that 1 is the largest eigenvalue of P = [(1 − α)g1T + αA],
and that no other eigenvalue whose absolute value is equal
to 1. Let x be the stable distribution, and so Px = x. x is
the eigenvector corresponding to the eigenvalue 1. Assume
the n − 1 other eigenvalues of P are |λ2| < 1, . . . , |λn| < 1,
we can find an invertible matrix S = ( x S1 ) such that

S−1PS =

0
BBB@

1 ∗ ∗ ∗
0 λ2 ∗ ∗
0 0

. . . ∗
0 0 0 λn

1
CCCA . (7)

Since eγR = eγ(−I+P) =

S−1

0
BBB@

1 ∗ ∗ ∗
0 eγ(λ2−1) ∗ ∗
0 0

. . . ∗
0 0 0 eγ(λn−1)

1
CCCAS, (8)

all eigenvalues of the matrix eγR are 1, eγ(λ2−1), . . . , eγ(λn−1).
When γ →∞, they become 1, 0, . . . , 0, which means that 1 is
the only nonzero eigenvalue of eγR when γ →∞. We can see
that when γ → ∞, eγReγRf(0) = eγRf(0), and so eγRf(0)
is an eigenvector of eγR when γ → ∞. On the other hand,

eγRx = (I+γR+ γ2

2!
R2+ γ3

3!
R3+. . .)x = Ix+γRx+ γ2

2!
R2x+

γ3

3!
R3x + . . . = x since Rx = (−I + P)x = −x + x = 0,

and hence x is the eigenvector of eγR for any γ. Therefore
both x and eγRf(0) are the eigenvectors corresponding the
unique eigenvalue 1 of eγR when γ →∞, and consequently
x = ceγRf(0).

By this theorem, we see that DiffusionRank is a gener-
alization of PageRank. When γ = 0, the ranking value is
most robust to manipulation since no heat is diffused and
the system is unchangeable, but the Web structure is com-
pletely ignored since eγRf(0) = e0Rf(0) = If(0) = f(0);
when γ = ∞, DiffusionRank becomes PageRank, it can be
manipulated easily. We expect an appropriate setting of
γ that can balance both. For this, we have no theoretical
result, but in practice we find that γ = 1 works well in Sec-
tion 5. Next we discuss how to determine the number of
iterations if we employ the discrete heat kernel.

4.4 The Number of Iterations
While we enjoy the advantage of the concise form of the

exponential heat kernel, it is better for us to calculate Dif-
fusionRank by employing Eq. (6) in an iterative way. Then
the problem about determining N–the number of iterations
arises:

For a given threshold ε, find N such that ||((I + γ
N

R)N −
eγR)f(0)|| < ε for any f(0) whose sum is one.

Since it is difficult to solve this problem, we propose a
heuristic motivated by the following observations. When
R = −I+P, by Eq. (7), we have (I+ γ

N
R)N = (I+ γ

N
(−I+

P))N =

S−1

0
BBB@

1 ∗ ∗ ∗
0 (1 + γ(λ2−1)

N
)N ∗ ∗

0 0
. . . ∗

0 0 0 (1 + γ(λn−1)
N

)N

1
CCCAS. (9)

Comparing Eq. (8) and Eq. (9), we observe that the eigen-

values of (I + γ
N

R)N − eγR are (1 + γ(λn−1)
N

)N − eγ(λn−1).
We propose a heuristic method to determine N so that the
difference between the eigenvalues are less than a threshold
for only positive λs.

We also observe that if γ = 1, λ < 1, then |(1+ γ(λ−1)
N

)N−
eγ(λ−1)| < 0.005 if N ≥ 100, and |(1+ γ(λ−1)

N
)N −eγ(λ−1)| <

0.01 if N ≥ 30. So we can set N = 30, or N = 100, or others
according to different accuracy requirements. In this paper,
we use the relatively accurate setting N = 100 to make the
real eigenvalues in (I + γ

N
R)N − eγR less than 0.005.

5. EXPERIMENTS
In this section, we show the experimental data, the method-

ology, the setting, and the results.

5.1 Data Preparation
Our input data consist of a toy graph, a middle-size real-

world graph, and a large-size real-world graph. The toy
graph is shown in Fig. 2 (a). The graph below it shows node
1 is being manipulated by adding new nodes A, B, C, . . .
such that they all point to node 1, and node 1 points to
them all. The data of two real Web graph were obtained
from the domain in our institute in October, 2004. The
total number of pages found are 18,542 in the middle-size
graph, and 607,170 in the large-size graph respectively. The
middle-size graph is a subgraph of the large-size graph, and
they were obtained by the same crawler: one is recorded
by the crawler in its earlier time, and the other is obtained
when the crawler stopped.

5.2 Methodology
The algorithms we run include PageRank, TrustRank and

DiffusionRank. All the rank values are multiplied by the
number of nodes so that the sum of the rank values is equal
to the number of nodes. By this normalization, we can com-
pare the results on graphs with different sizes since the aver-
age rank value is one for any graph after such normalization.
We will need value difference and pairwise order difference as
comparison measures. Their definitions are listed as follows.

Value Difference. The value difference between A =
{Ai}n

i=1 and B = {Bi}n
i=1 is measured as

Pn
i=1 |Ai −Bi|.

Pairwise Order Difference. The order difference between
A and B is measured as the number of significant order
differences between A and B. The pair (A[i], A[j]) and
(B[i], B[j]) is considered as a significant order difference if
one of the following cases happens: both A[i] > [ <]A[j]+0.1
and B[i] ≤ [≥]A[j]; both A[i] ≤ [≥]A[j] and B[i] > [ <
]A[j] + 0.1.
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Figure 2: (a) The toy graph consisting of six nodes,
and node 1 is being manipulated by adding new
nodes A, B, C, . . . (b) The approximation tendency to
PageRank by DiffusionRank

5.3 Experimental Set-up
The experiments on the middle-size graph and the large-

size graphs are conducted on the workstation, whose hard-
ware model is Nix Dual Intel Xeon 2.2GHz with 1GB RAM
and a Linux Kernel 2.4.18-27smp (RedHat7.3). In calcu-
lating DiffusionRank, we employ Eq. (6) and the discrete
approximation of Eq. (4) for such graphs. The related tasks
are implemented using C language. While in the toy graph,
we employ the continuous diffusion kernel in Eq. (4) and
Eq. (5), and implement related tasks using Matlab.

For nodes that have zero out-degree (dangling nodes), we
employ the method in the modified PageRank algorithm [8],
in which dangling nodes of are considered to have random
links uniformly to each node. We set α = αI = αB = 0.85 in
all algorithms. We also set g to be the uniform distribution
in both PageRank and DiffusionRank. For DiffusionRank,
we set γ = 1. According to the discussions in Section 4.3 and
Section 4.4, we set the iteration number to be MB = 100 in
DiffusionRank, and for accuracy consideration, the iteration
number in all the algorithms is set to be 100.

5.4 Approximation of PageRank
We show that when γ tends to infinity, the value differ-

ences between DiffusionRank and PageRank tend to zero.
Fig. 2 (b) shows the approximation property of Diffusion-
Rank, as proved in Theorem 1, on the toy graph. The hori-
zontal axis of Fig. 2 (b) marks the γ value, and vertical axis
corresponds to the value difference between DiffusionRank
and PageRank. All the possible trusted sets with L = 1
are considered. For L > 1, the results should be the linear
combination of some of these curves because of the linear-
ity of the solutions to heat equations. On other graphs, the
situations are similar.

5.5 Results of Anti-manipulation
In this section, we show how the rank values change as the

intensity of manipulation increases. We measure the inten-
sity of manipulation by the number of newly added points
that point to the manipulated point. The horizontal axes
of Fig. 3 stand for the numbers of newly added points, and
vertical axes show the corresponding rank values of the ma-
nipulated nodes. To be clear, we consider all six situations.
Every node in Fig. 2 (a) is manipulated respectively, and its
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Figure 3: The rank values of the manipulated nodes
on the toy graph

200040006000800010000
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of New Added Points

R
a

n
k 

o
f 

th
e

 M
a

n
ip

u
la

td
 N

o
d

e

PageRank
DiffusionRank−uniform
DiffusionRank0
DiffusionRank1
DiffusionRank2
DiffusionRank3
TrustRank0
TrustRank1
TrustRank2
TrustRank3

2000 4000 6000 8000 10000
0

20

40

60

80

100

120

140

160

180

Number of New Added Points
R

a
n

k 
o

f 
th

e
 M

a
n

ip
u

la
td

 N
o

d
e

PageRank
DiffusionRank
TrustRank
DiffusionRank−uniform

(a) (b)

Figure 4: (a) The rank values of the manipulated
nodes on the middle-size graph; (b) The rank values
of the manipulated nodes on the large-size graph

corresponding values for PageRank, TrustRank (TR), Dif-
fusionRank (DR) are shown in the one of six sub-figures in
Fig. 3. The vertical axes show which node is being ma-
nipulated. In each sub-figure, the trusted sets are com-
puted below. Since the inverse PageRank yields the results
[1.26, 0.85, 1.31, 1.36, 0.51, 0.71]. Let L = 1. If the manip-
ulated node is not 4, then the trusted set is {4}, and oth-
erwise {3}. We observe that in all the cases, rank values
of the manipulated node for DiffusionRank grow slowest as
the number of the newly added nodes increases. On the
middle-size graph and the large-size graph, this conclusion
is also true, see Fig. 4. Note that, in Fig. 4 (a), we choose
four trusted sets (L = 1), on which we test DiffusionRank
and TrustRank, the results are denoted by DiffusionRanki
and TrustRanki (i = 0, 1, 2, 3 denotes the four trusted set);
in Fig. 4 (b), we choose one trusted set (L = 1). Moreover,
in both Fig. 4 (a) and Fig. 4 (b), we show the results for
DiffusionRank when we have no trusted set, and we trust
all the pages before some of them are manipulated.

We also test the order difference between the ranking or-
der A before the page is manipulated and the ranking order
PA after the page is manipulated. Because after manipu-
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lation, the number of pages changes, we only compare the
common part of A and PA. This experiment is used to test
the stability of all these algorithms. The less the order dif-
ference, the stabler the algorithm, in the sense that only a
smaller part of the order relations is affected by the manip-
ulation. Figure 5 (a) shows that the order difference values
change when we add new nodes that point to the manipu-
lated node. We give several γ settings. We find that when
γ = 1, the least order difference is achieved by Diffusion-
Rank. It is interesting to point out that as γ increases, the
order difference will increase first; after reaching a maximum
value, it will decrease, and finally it tends to the PageRank
results. We show this tendency in Fig. 5 (b), in which we
choose three different settings—the number of manipulated
nodes are 2,000, 5,000, and 10,000 respectively. From these
figures, we can see that when γ < 2, the values are less than
those for PageRank, and that when γ > 20, the difference
between PageRank and DiffusionRank is very small. Af-
ter these investigations, we find that in all the graphs we
tested, DiffusionRank (when γ = 1) is most robust to ma-
nipulation both in value difference and order difference. The
trust set selection algorithm proposed in [7] is effective for
both TrustRank and DiffusionRank.
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Figure 5: (a) Pairwise order difference on the
middle-size graph, the least it is, the more stable
the algorithm; (b) The tendency of varying γ

6. CONCLUSIONS
We conclude that DiffusionRank is a generalization of

PageRank, which is interesting in that the heat diffusion co-
efficient γ can balance the extent that we want to model the
original Web graph and the extent that we want to reduce
the effect of link manipulations. The experimental results
show that we can actually achieve such a balance by set-
ting γ = 1, although the best setting including varying γi

is still under further investigation. This anti-manipulation
feature enables DiffusionRank to be a candidate as a peni-
cillin for Web spamming. Moreover, DiffusionRank can be
employed to find group-group relations and to partition Web
graph into small communities. All these advantages can be
achieved in the same computational complexity as PageR-
ank. For the special application of anti-manipulation, Dif-
fusionRank performs best both in reduction effects and in
its stability among all the three algorithms.
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