
Developing Aerospace Applications with a Reliable Web
Services Paradigm.

Pat Chan Michael R. Lyu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Hong Kong, China

{pwchan, lyu}@cse.cuhk.edu.hk

Abstract—One of the latest achievements of the Internet us-
age is the availability of Web services technology. Web ser-
vices provide an efficient and convenient way for service pro-
visioning, exchanging and aggregating, which facilitates a re-
sourceful platform for the aerospace industry. The aerospace
industry usually involves products of complex synthesis of
various technologies and sciences. These different technical
resources can be provided in the form of Web services to in-
crease their availability, efficiency and performance. How-
ever, in aerospace area, reliability is an ultimately important
issue. In this paper, we target on providing a reliable Web
service paradigm for the industry. We describe the methods
of reliability enhancement by redundancy in space and re-
dundancy in time, identify parameters impacting Web service
reliability, and present a Web service composition algorithm.
The replication algorithm and the detailed system configu-
ration are described. The Web services are coordinated by
a replication manager, which schedules the workload of the
Web services and keeps updating the availability of each Web
service. We also perform a series of experiments employing
several replication schemes and compare them with a non-
redundant single service to evaluate the reliability of the pro-
posed paradigm. Finally, we also model the Web services
with Petri-Net and Markov chains to demonstrate the perfor-
mance and reliability of the Web services.

TABLE OF CONTENTS

1 INTRODUCTION . 1
2 RELATED WORK . 1
3 METHODOLOGIES FOR RELIABLE WEB SER-

VICES . 3
4 WEB SERVICE COMPOSITION . 5
5 EXPERIMENT . 8
6 RELIABILITY MODELING . 10
7 CONCLUSIONS . 12

ACKNOWLEDGEMENTS . 12
REFERENCES . 12
BIOGRAPHY . 13

1-4244-1488-1/08/$25.00 c©2008 IEEE
IEEEAC Paper #1602, Version 1.0 Updated 20 October 2007.

1. INTRODUCTION

A Web service is based on Service-Oriented Architectures
(SOA) [1]. This approach simplifies interoperability as only
standard communication protocols and simple broker-request
architectures are needed to facilitate exchanges of services.
Web services are becoming more popular and are beginning
to pervade all aspects of human life, including the aerospace
industry. Web services provide an efficient and convenient
way for service provisioning, exchanging and aggregating.
They facilitate a resourceful platform for the aerospace in-
dustry. However, in the aerospace industry, the problems of
service dependability, security and timeliness are critical.

One important element in the delivery of reliable Web ser-
vices is that the software itself should be reliable. To achieve
this, software needs to be fault-tolerant. Several fault-tolerant
approaches have been proposed for Web services in the lit-
erature [2], [3], [4], [6], [7], [8], but the field still requires
theoretical foundations, appropriate models, effective design
paradigms, practical implementations, and in-depth experi-
mentation. We attack these issues in a unified approach in
our research, which is aimed at building reliable Web services
with credible modeling techniques and critical analyzes.

The rest of the paper is organized as follows. Related work
on dependable services is presented in Section 2, in which
the problem statement about reliable Web services is identi-
fied. In Section 3, methodologies for reliable Web services
are presented, and a roadmap to dependable Web services is
offered. Web service composition is proposed in Section 4,
experimental results are presented in Section 5, and reliabil-
ity modeling is laid out in Section 6. Finally, conclusions are
made in Section 7.

2. RELATED WORK

In aerospace systems, reliability, availability, and maintain-
ability are extremely important. The solar cells in aerospace
applications is an example [9], which is shown in Figure 1.
A stable supply of electrical power is crucial for the success
of space missions. Photovoltaic arrays are the most common
means of in-orbit energy generation; however, mechanical so-
lar cell defects have the potential to impact their reliability
considerably.

1

Figure 1. A solar cell in space.

In [10], wireless chip-to-chip communications and inter-
connects are discussed. Communication is critical for the
aerospace application. The ever-growing demand for on-
board spacecraft processing combined with the exponential
advance in chip development and high pin count devices is re-
sulting in an increased complexity in high reliability intercon-
nect technology. When the thermal management, control of
ground bounce, and power distribution issues are considered,
achieving the required reliability levels for space applications
with traditional interconnect technologies is becoming more
of a concern.

Some of the aerospace applications can be developed with
Web services, such as the manual Failure Reporting and Cor-
rective Action Process (FRACAS) [11] which is implemented
for collecting reliability data from different parts of the orga-
nization for aircrafts. The goal of FRACAS is to generate
reliability graphs for the entire system and the key compo-
nents to determine system availability and ensure contractual
compliance. Overall, the process is time-consuming and ex-
pensive, taking as much as two months of effort to determine
key metrics. Additionally, it relies heavily on the knowledge
and experience of one key individual personnel.

As more and more aerospace applications are using the Web
service technologies, building reliable Web services with
fault tolerance is critical for this industry. Fault tolerance
can be achieved via spatial or temporal redundancy, including
replication of hardware (with additional components), soft-
ware (with special programs), and time (with diversified op-
erations) [12], [13], [14]. Spatial redundancy can be static
or dynamic, both of which use replication. In static redun-
dancy, all replicas are active at the same time and voting takes
place to obtain a correct result. The number of replicas is usu-
ally odd and the approach is known as n-modular redundancy
(NMR). For example, under a single-fault assumption, if ser-
vices are triplicated and one of them fails, the remaining two
will still guarantee the correct result. Dynamic redundancy,
on the other hand, engages one primary active replica at one
time while others are kept in an active or in a standby state.

If the primary replica fails, another active (secondary) replica
can be employed immediately with little impact on response
time. In the other case, if the active replica fails, a previ-
ously inactive replica must be initialized and take over the
operations. This may also increase the recovery time because
of its dependence on time-consuming error-handling stages
such as fault diagnosis, system reconfiguration, and resump-
tion of execution. It is noted that redundancy can be achieved
by replicating hardware modules to provide backup capacity
when a failure occurs, or redundancy can be obtained using
software solutions to replicate key elements of a critical pro-
cess.

In any redundant systems, common-mode failures result from
failures that affect more than one module at the same time,
generally due to a common cause. These include design mis-
takes and operational failures that may be caused externally
or internally. Design diversity has been proposed in the past
to protect redundant systems against common-mode failures
[15], [17] and has been used in both firmware and software
systems. The basic idea is that, with different design and im-
plementations, common failure modes can be reduced. One
of the design diversity techniques is N-version programming
[16], and the other one is Recovery Blocks [18]. The key
element of N-version programming or Recovery Block ap-
proaches is diversity. By attempting to make the development
processes diverse, it is hoped that the independently designed
versions will also contain faults that are either non-identical
or dissimilar.

Based on the these fault-tolerant approaches, a number of re-
liable Web services techniques have appeared in the recent
literature. WS-FTM (Web Service-Fault Tolerance Mecha-
nism) is an implementation of the classic N-version model
for Web services [3], which can easily be applied to exist-
ing systems with minimal change. The Web services are im-
plemented in different versions, and the voting mechanism
is conducted in the client program. FT-SOAP [4], on the
other hand, is aimed at improving the reliability of the Simple
Object Access Protocol (SOAP) when using Web services.
The system includes different approaches to function replica-
tion management, fault management, logging/recovery mech-
anism and client fault tolerance transparency. FT-SOAP is
based on the work of FT-CORBA [5], in which a fault-
tolerant SOAP-based middleware platform is proposed.

FT-Grid [19] is another design, which is a deployment of de-
sign diversity for fault tolerance in Grid. It is not originally
specified for Web services, but the techniques are applicable
to Web Services. FT-Grid allows a user to manually search
through any number of public or private Universal Descrip-
tion, Discovery and Integration (UDDI) repositories, to select
a number of functionally-equivalent services, to choose the
parameters for each service, and to invoke these services. The
application can then perform voting on the results returned by
the services, with the aim of filtering out any anomalous re-
sults.

2

Although a number of approaches have been proposed to in-
crease Web service reliability, there is a need for systematic
modeling and experiments to understand the tradeoffs and to
verify the reliability of the proposed methods. We proposed a
framework [20] for the deployment of reliable Web services,
and enhanced the scheme with a Round-robin algorithm and
N-version programming for Web services [21]. In this paper,
we focus on the systematic analysis of the replication tech-
niques when applied to Web services. A generic Web service
system with spatial as well as temporal replication is pro-
posed, and its prototype is implemented as an experimental
testbed. To make more versions of Web services available for
the proposed paradigm, a dynamic Web service composition
is developed and its correctness is verified through different
experiments.

3. METHODOLOGIES FOR RELIABLE WEB
SERVICES

In this section, we propose a replication Web service system
for reliable Web services. Its architecture is shown in Figure
2. In our system, the dynamic approach is adopted.

Scheme Details

In the proposed system, we apply two different approaches
for managing spatial replication, including a Round-robin
(RR) algorithm and N-version programming. We perform
different experiments to evaluate the reliability of the system.

Round-robin approach—In the first approach, the Web servers
work concurrently and a Round-robin algorithm [22] is em-
ployed for scheduling the work among the Web services.
The Web service is replicated on different machines. When
there is a Web service failure, other Web servers can imme-
diately provide the required service. The replication mecha-
nism shortens the recovery time and increases the reliability
of the system.

The main component of this system is the replication manager
(RM), which acts as a coordinator of the Web services. The
replication manager is responsible for:

1. Choosing (with an anycasting algorithm) the best (fastest,
most robust, etc.) Web service [23] to provide the service,
which is called the primary Web service.
2. Keeping the availability list of the Web services.
3. Registering the Web Service Definition Language (WSDL)
with the Universal Description, Discovery, and Integration
(UDDI).
4. Continuously checking the availability of the Web services
by using a watchdog.
5. Applying the Round-robin algorithm for scheduling the
workload of the Web service.

The replication manager schedules the work of the Web
service using the Round-robin algorithm; therefore, the re-
sources of the system can be fully utilized. The replication

Figure 3. Workflow of the Replication Manager

manager distributes the work to different Web servers accord-
ing to the availability of the servers. The requests are sent
to different Web services accordingly. Whenever the server
changes, the replication manager maps the new address of
the Web service providing the service to the WSDL; thus, the
clients can still access the Web service with the same URL.
This failover process is transparent to the users.

The workflow of the replication manager is shown in Fig-
ure 3. The replication manager is running on a server, which
keeps checking the availability of the Web services by a
polling method: namely it sends messages to the Web ser-
vices periodically. If it does not get a reply from the primary
Web service, it will select another Web service to replace the
primary one and map the new address to the WSDL. The sys-
tem is considered failed if all the Web services have failed.

N-version Programming approach—In the second approach,
different versions of the Web service are employed. The re-
quests from the clients are forwarded to all versions of the
Web services. When all the results are ready, a voting algo-
rithm is applied to obtain the majority result and return the
answer to the corresponding client.

The architecture of the system is similar to that in the first ap-
proach. However, the functionality of the replication manager
is different. The replication manager is responsible for:

1. Selecting the primary Web service for executing the voting
procedure. Once the selected Web service gets the request, it
will forward the request to all the Web services.
2. Keeping the availability list of the Web services.
3. Registering the Web Service Definition Language (WSDL)
with the Universal Description, Discovery, and Integration
(UDDI).
4. Continuously checking the availability of the Web services
by using a watchdog.

Roadmap for Experimental Research

We take a pragmatic approach by starting with a single ser-
vice without any replication. The only approach to fault toler-
ance in this case is the use of redundancy in time. If a service
is considered as an atomic action or a transaction in which

3

Figure 2. Architecture for dependable Web services.

the input is clearly defined, no interaction is allowed during
its execution, and the outcome has two possible states: correct
or incorrect. In this case, the only way to make such a service
fault tolerant is to retry or reboot it. This approach allows
tolerance of temporary faults, but it will not be sufficient for
tolerating permanent faults within a server or a service. One
issue is how much delay the user can tolerate, and another
issue is the optimization of the retry or the reboot time.

If redundancy in time is not appropriate to meet dependabil-
ity requirements or if the time overhead is unacceptable, the
next step is redundancy in space. Redundancy in space for
services means replication where multiple copies of a given
service may be executed sequentially or in parallel. If the
copies of the same services are executed on different servers,
different modes of operations are possible:

1. Sequentially, meaning that we await a response from a pri-
mary service and in case of timeout or a service delivering in-
correct results, we invoke a back-up service (multiple backup
copies are possible). This is known as static redundancy.
2. In parallel, meaning that multiple services are executed
simultaneously and if the primary service fails, the next one
takes over. Another variant is that the service whose response
arrives first is taken.
3. There is also a possibility of majority voting using n-
modular redundancy, where results are compared and the final

outcome is based on at least �n/2 + 1� services agreeing on
the result. This is known as dynamic redundancy.

If diversified versions of different services are compared, the
approach can be seen as either a Recovery Block (RB) sys-
tem, where backup services are engaged sequentially until
the results are accepted (by an Acceptance Test), or an N-
version programming (NVP) system where voting takes place
and majority results are taken as the final outcome. In case of
failure, the failed service can be masked and the processing
can continue.

NVP and RB have undergone various challenges and lively
discussions. Critics state that the development of multiple
versions is too expensive and dependability improvement is
questionable in comparison with a single version, provided
the development effort equals the development cost of the
multiple versions. We argue that, in common with the ma-
turity of service-oriented computing technologies, diversi-
fied Web services now predominate and the objections to
NVP or RB can be mitigated. Based on market needs, ser-
vice providers are competitively and independently develop-
ing their services and making them available on the market.
With an abundance of services available for specific func-
tional requirements, it is apparent that fault tolerance by de-
sign diversity will be a natural choice. Moreover, NVP can
be applied to services not only for dependability but also for

4

higher performance purposes, due to locality considerations.

Finally, a hybrid method may be employed where both space
and time redundancy are applied, and depending on system
parameters, a retry might be more effective before switching
to the back-up service. This type of approach will require a
further investigation.

4. WEB SERVICE COMPOSITION

Diversity is one of the key elements in the proposed
paradigm. In the emergence of service-oriented computing,
different versions of Web services or even different versions
of their components are abundantly available in the Internet.
The combination of different versions of the Web service or
their components is thus becoming critical for enabling differ-
ent versions in a Web service application using the N-version
approach. In this section, we propose an approach for com-
posing Web services with an N-version Programming Web
for improving the reliability of the overall system.

Web Service Description

The description of the Web service is statically provided by
WSDL, which includes Web service functional prototypes.
However, its static nature limits the flexibility for composing
Web services. Different Web services provide their service
at different times, and so a dynamic composition approach is
necessary for composing different versions of Web services
available in the Internet.

In Web services, the communication mainly depends on the
messages exchanged between different Web servers. The
Web Service Choreography Interface (WSCI) [25] is an
XML-based language for the description of the observable
behavior of a Web service in the context of a collaborative
business process or work-flow. WSCI describes the dynamic
interface of the Web Service participating in a given message
exchange by means of reusing the operations defined for a
static interface. It defines the flow of messages exchanged
by a stateful Web service, describing its observable behavior.
By specifying the temporal and logical dependencies among
the message exchange, WSCI is used to describe a service in
such a way that other Web services can unambiguously inter-
act with the described service in conformity with the intended
collaboration. Though WSCI provides a message-oriented
view of the process, it does not define the internal behavior
of the Web service or the process.

Proposed Composition Method

Our proposed service composition method is based on two
standard Web service languages: WSDL and WSCI. WSDL
describes the entry points for each available service, and
WSCI describes the interactions among WSDL operations.
WSCI complements the static interface details provided by a
WSDL file describing the way operations are choreographed
and the associated properties. This is achieved with the dy-
namic interface provided by WSCI through which the inter-

relationship between different operations can be observed in
the context of a particular operational scenario.

The flow of the composition procedure is as follows: First,
get the WSDL of the Web service components from UDDI.
Then, through the messages between the Web services, ob-
tain the WSCI of the components. Afterwards, determine the
input and output of the components through WSDL and de-
termine the interactions between different components to pro-
vide the service through WSCI. Perform the composition of
the Web service with the information obtained using the algo-
rithm described below. The detailed composition algorithm is
as follows.

Algorithm 1 Algorithm for Web service composition

Require: I[n]: required input, O[n]: required output
1: CPn: the nth Web services component
2: for all O[i] such that 0 ≤ i ≤ 10 do
3: Search the WSDL of the Web services, and find the

CPn ’s operation output = O[i]. Then, insert CPn into
the tree.

4: if the input of the operation = I[j] then
5: Insert the input to the tree as the child of CPn.
6: else
7: Search the WSCI of CPn, WSCI.process.action =

operation.
8: Find the previous action needing to be invoked.
9: Search the operation in WSDL equal to the action.
10: if input of the operation = I[i] then
11: Insert input to the tree as the child of CPn

12: else
13: go to step (8)
14: end if
15: end if
16: until reaching the root of WSCI and not finding the

correct input, search other WSDL with their output =
I[j], insert CPm as the child of CPn and go to step (7)
to do the searching in WSCI of CPm.

17: end for

In the algorithm, we aim to build the tree for the Web ser-
vice composition. We use a bottom-up approach to perform
the composition, that is, we build the composition tree from
output to input.

When we get the required output, we search the Web services
in the WSDL. In the operation tag of the WSDL, the output
information is stated. When the desired output is found, that
Web service component (CPn) is inserted as the root of the
tree. Then, if the input of that operation matches the required
input, the searching is completed and the input is inserted as
a child of the CPn. Otherwise, we will search the action in
WSCI which matches the operation in CPn. After the action
is found, we can determine the previous action. Then, we can
find the operation prototypes in the WSDL. If the input of
this operation matches the required input, their composition
is completed. Otherwise, we will iterate until the root of the

5

WSCI is reached.

If the desired input is still not found, we will search for the
operations in the other WSDL whose output is equal to the
input of CPn. If the next Web service component found is
CPm, then CPm is inserted as the child of CPn. We perform
the searching iteratively to continues to build the tree until all
the inputs match the required input.

Case Study

For spacecrafts, entry, descent, and landing are important is-
sues for the whole driving process. Figure 4 shows the con-
figuration of this process. It is a new landing system de-
veloped by Mars Science Laboratory [24]. In the landing
process, it includes cruise stage separation, de-spin, cruise
balance mass jettison, turn to entry attitude, entry interface,
peak heating, peak deceleration, heading alignment and de-
ploy parachute. There are a lot of calculations and optimiza-
tions in the landing process, including route finding, timing,
information searching, communication . . . etc. To simulate
the similar example for experimentation, the Best Route Find-
ing system (BRF) is chosen for case study. The architecture
is shown in Figure 5.

Figure 4. Procedures of landing system.

This system suggests the best route for a journey within Hong
Kong by public transport, based on input consisting of the
starting point and the destination. BRF consists of different
components, including a search engine, agent servers, and the
public transport companies. We acquired several versions of
BRF, which are implemented by different teams using dif-
ferent components. Also, the Web service components may
differ between parties; thus, to illustrate the Web service com-
position procedure, in this experiment, we try to composite
the Web services from different versions with the provided
WSDL and WSCI.

The following shows part of the WSDL specification of the
search engine. The WSDL shows the input and output pa-
rameters of the services provided by the search engine.

<?xml version="1.0" encoding="UTF-8"?>
...

<portType name=BRF">

<operation name=shortestpath">
<input message=

"tns:startpointDestination"/>
<output message="tns:pathArray"/>

</operation>

<operation name=addCheckpoint">
<input message="tns:pathArray"/>
<output message=

"tns:addAcknowledgement"/>
</operation>
...
</operation>

</portType> </definitions>

The following shows part of the WSCI specification of the
search engine.

<correlation name=pathCorrelation
property=tns:pathID></correlation>

<interface name=busAgent>
<process instantiation="message">

<sequence>
<action name="ReceiveStartpointDest

role="tns:busAgent
operation="tns:BRF/shortestpath">

</action>
<action name="Receivecheckpoint
role=" tns:busAgent
operation="tns:BRF/addCheckpoint">
<correlate correlation=

tns: pathCorrelation/>
<call process=tns:SearchPath/>

</action>
</sequence>

</process>
...

Based on the algorithm, the Composition tree is built, giving
the result as shown in Figure 6.

Verification with Petri-Net

To verify the correctness of the composed Web service, Petri-
Net [26] is employed. We first construct a Petri-Net for the
Web service with the information provided in Business Pro-
cess Execution Language for Web services (BPEL) [27].

BPEL—BPEL is a language used for the definition and exe-
cution of business processes using Web services. BPEL en-
ables the top-down realization of Service Oriented Architec-
ture (SOA) through composition, orchestration, and coordi-
nation of Web services. BPEL provides a relatively easy and
straightforward way to compose several Web services into
new composite services called business processes. After a
Web service is composed with the proposed algorithm in the

6

Data

Internet

Agent

Server

MTR

Data KCR

Data

Agent

Server

MTR

Data KCR

Search

engine

Checkpoint

server

ASP for Web

Window form

for

standalone

program

Figure 5. Best Route Finding system architecture.

Bus Agent

Search

Agent

Train

Agent

Bus :KMB

Starting

P1

Train:MTR

Starting

P2

Figure 6. Composition tree of BRF.

pervious section, a BPEL is constructed. BPEL describes the
composition properties of the Web service, such as commu-
nication and specific behaviors.

A BPEL process specifies the exact order in which participat-
ing Web services should be invoked, either sequentially or in
parallel. With BPEL, conditional behaviors can be expressed.
For example, an invocation of a Web service can depend on
the value of a previous invocation. Also it can construct loops,
declare variables, copy and assign values, define fault han-
dlers, and so on. By combining all these constructs, the flow
of the Web service can be defined.

Building Block of Petri-Net—In the verification process, we
employ Petri-Net to build the model of the Web service to
prevent deadlock and construct dynamical relations. Differ-
ent building blocks of Petri-Net are defined according to the
activities in BPEL schema, including the inner-service, intra-
service, inter-activity, and intra-activity. With the defined

blocks, we map the operations or activities specified in BPEL
to the Petri-Net building blocks. Then, a Petri-Net for a spec-
ified Web service is generated. Some major building blocks
are defined in Table 1 and Table 2, respectively.

Table 1. Petri-Net building blocks of basic activities

Building Block type Description

Invoke The Invoke activity directs
a Web service to perform an operation.

Reply The Reply activity matches a
Receive activity. It has the same partner
link, port type, and operation as
its matching Receive. Use a Reply to send
a synchronous response to a Receive.

Empty The Empty activity is a no operation
instruction in the business process.

Assign The Assign activity updates
the content of variables.

Terminate The Terminate activity stops
a business process.

Throw The Throw activity provides one way
to handle errors in a BPEL process.

Wait The Wait activity tells the business
process to wait for a given time period
or until a certain time has passed.

Table 2. Petri-Net building blocks of structure activities

Building Block type Description

While Repeat the same sequence
of activities as long as some
condition is satisfied.

Switch Use ”case-statement” to
produce branches.

Sequence Definition of a series of
steps for the orderly sequence.

Link Link different activities
work together.

Flow A series of steps should be
specified in parallel implementation.

7

A Web service operation is composed by basic activity (re-
ceive, reply, assign, invoke, empty, terminate, throw and
wait) and structures activity (while, switch, sequence, link
and flow). Two sample basic activities translation is shown in
Figure 7. Web services are described procedurally. A Place
connected to a transition intuitively expresses the states be-
fore and after executing the corresponding action. Firing a
transition means that the corresponding action is executed.
Web service invocation is expressed by entering a token in a
place which denotes the starting point of the operation.

output
Output transition Reply

Output

message

Finish

(b) Reply

Input
Input transition Branch

Input

message

(a) Invoke

Output

transition Process
Output

message

Finish

Fault handler
Fault

message

Finish

Output

message

Fault transition

Figure 7. Basic Petri-Net building block.

Figure 8 illustrates a basic Web service operation composed
with Petri-Net building blocks. A building block is presented
by a place with a token whose type is specified by the block
type. An arc is used to link the transition with another arc
connecting to the input/output message consisting of those
blocks based on the relationship defined in the schema [27].

Input
Input transition

Block 1

Block 2

Operation

Finish

(output to block 3)

Finish

(output to block 4)

Figure 8. Composed Petri-Net building block graph.

With the Petri-Net building blocks and the BPEL of the BRF,
Petri-Net of different version BRF can be generated. One of
the composed BRF is shown in Figure 9. With the constructed
Petri-Net, we perform the operation to check the correctness
and verify that the developed Web service is deadlock free.

5. EXPERIMENT

In this section, we describe the various approaches and some
experiments in more detail. We generate different version of
BRF with the Web service composition algorithm and eval-
uate with program metric. Furthermore, we perform experi-
ments to evaluate the reliability of the paradigm proposed in

Receive
Input transition Wait

Bus Assign

Train Assign

Invoke

Invoke

Reveive

Reveive

Sequence

Sequence

Reply

Reply

Terminate

Figure 9. Petri-Net of BRF.

Table 3. Program metrics for 15 versions

ID Lines Line without Number of Complexity
comment function

01 3452 3052 59 64
02 2372 1982 47 87
034 2582 2033 26 45
04 3223 3029 78 124
05 2358 2017 34 89
06 4478 3978 56 107
07 1452 1320 38 46
08 5874 5275 80 124
09 3581 3214 45 74
10 4578 4187 47 113
11 2364 2015 36 76
12 2987 2336 65 147
13 4512 3948 75 155
14 3698 3247 60 192
15 4185 3856 34 88

Section 3. We formulate several additional quality-of-service
parameters from the viewpoint of service customers. We pro-
pose a number of fault injection experiments showing both
dependability and performance with and without diversified
Web services. The outlined roadmap to fault-tolerant ser-
vices leads to ultra reliable services where hybrid techniques
of spatial and time redundancy can be used for optimal.

Different versions of BRF

According to the Web service composition algorithm de-
scribed above section, different versions of BRF are com-
posed. The program metrics for 15 versions of BRF are
shown in Table 3 where the first 11 versions are implemented
by different teams and the rest are composed by the proposed
algorithm.

A series of experiments are designed and performed for eval-
uating the reliability of the Web service. In the system, we
apply retry, reboot and spatial replication with Round-robin
or N-version Web services. We perform the experiments with
different combinations. Table 4 shows all the combinations
of the experiments.

8

Table 4. Summary of the experiments

Experiment ID 1 2 3 4 5 6 7 8

Spatial replication 0 0 0 0 1 1 1 1
Reboot 0 0 1 1 0 0 1 1
Retry 0 1 0 1 0 1 0 1

Table 5. Parameters of the experiments

Parameters Current setting/metric

1 Request frequency 1 req/min
2 Polling frequency 10 per min
3 Number of versions 15
4 Client timeout period for retry 10 mins
5 Max number of retries 5
6 Failure rate λ number of failures/hour
7 Load (profile of the program) 78.5%
8 Reboot time 10 min
9 Failover time 1 s
10 Communication time to

Computational time ratio 10:1
11 Round-robin rate 1 s
12 Temporary fault probability 0.01
13 Permanent fault probability 0.001

Experiment Setup

In our experiments, we run a variety of Web services in the
system to evaluate the reliability of the proposed fault toler-
ant techniques under different situations. Some faults exist in
the original version, some faults are injected in the code [28],
and some faults are injected in the system using fault injection
techniques similar, for example, to those in [6], [29]. A num-
ber of faults may occur in the Web service environment [30].
The types of fault injected include permanent fault (the server
is down permanently once this fault occurs), temporary fault
(the fault only occurs randomly), Byzantine fault [31], [32]
and network fault [28]. A Byzantine fault is an arbitrary fault
that occurs during the execution of an algorithm by a Web
service. In our experiment, several teams implement various
versions of the Web service using a number of algorithms, in
which the injected faults are triggered. To generate a network
fault, WS-FIT fault injection is applied. The fault injector de-
codes the SOAP message and can inject faults into individual
RPC parameters, rather than randomly corrupting a message,
for instance by bit-flipping.

Our experimental environment is defined by a set of parame-
ters. Table 5 shows the parameters of the Web services in our
experiments. For each of the approaches described in Sec-
tion 3.1, several experiments are performed. In each exper-
iment, we compare eight approaches, as shown in Table 4,
for providing the Web services. They are single server with-
out retry and reboot, single server with retry, single server
with reboot, single server with retry and reboot, spatial repli-
cation with Round-robin / N-version, spatial replication with
Round-robin / N-version and retry, spatial replication with
Round-robin / N-version and reboot, and hybrid approach
with spatial replication, retry and reboot.

Our experimental system is implemented with Visual Studio
.Net and runs with a .Net framework. The Web server is repli-
cated on different machines and the Web service providing
the service is chosen by the replication manager.

Experimental Results

The Web services were executed for 7 days for each exper-
iment, generating a total of 10000 requests from the client.
A single failure is counted when the system cannot reply to
the client. For the approach with retry, a single failure is
counted when a client retries five times and still cannot get
the result. A summary of the results with the Round-robin
algorithm and N-version programming is shown in Table 6,
which shows the improvement of the reliability of the system
with our proposed paradigm. In the normal case, no failures
are introduced into the system. For the other cases, we insert
various kinds of faults into the systems.

When no redundancy techniques are applied on the Web ser-
vice system (Exp 1), it is clearly seen that the average failure
rate of the system is the highest. The results from the two
different ways of improving reliability investigated here, i.e.,
spatial redundancy with replication and temporal redundancy
with retry or reboot, are described below.

Single server with retry—When the system is under tempo-
rary faults and network fault, the experiment shows that the
temporal redundancy helps to improve the reliability of the
system. For the Web service with retry (Exp 2), the number
of failures is reduced to 0.04% where these failures are due to
the original faults in the program. This shows that the tempo-
ral redundancy with retry approach can significantly improve
the reliability of the Web service. When a fault occurs in the
Web service, on average, the clients need to retry twice to get
the response from the Web service. However, the response
time of the Web service is increased. Also, when there is
a permanent fault, this scheme cannot reduce the number of
failures in the system.

Single server with reboot—Another temporal redundancy ap-
proach is Web service with reboot (Exp 3). Our results show
that the failure rate of the system is reduced when there is a
permanent fault, in which case the server will try to reboot.
Once the server finishes rebooting, it can provide the service
again. The resulting failure rate is reduced from 88.5% to
10.6%. For temporary faults, the improvement is not as sub-
stantial as that of the temporal redundancy with retry. This is
due to the fact that, when the Web service cannot be provided,
the server will take time to reboot.

Single server with retry and reboot—With retry and reboot,
the failure rate of both temporary and permanent cases are
reduced. This approach enjoys the advantages of both algo-
rithms. For temporary faults, the number of failures is re-
duced to zero. For permanent faults, the number of failures
is significantly reduced from 88.5% to 1%; however, the re-
sponse time is also greatly increased.

9

Table 6. Experimental results

Experiment ID
(number of failures / 1 2 3 4 5 6

response time(s)) (RR) (RR)

Normal case 5/186 3/192 2/190 3/187 4/188 2/195
Temporary 1025/190 4/223 1106/231 4/238 1044/187 3/233
Permanent 8945/3000 8847/3000 1064/3000 5/1978 5637/3000 5532/3000

Byzantine fault 315/188 322/208 314/186 326/205 152/189 5/219
Network fault 223/187 2/227 239/193 3/231 237/193 3/213

Average 2102/730 1835/770 541/220 68/568 1415/751 1109/772

Experiment ID
(number of failures / 7 8 5 6 7 8

response time(s)) (RR) (RR) (N-version) (N-version) (N-version) (N-version)

Normal case 3/193 2/190 0/189 0/190 0/188 0/188
Temporary 1057/188 2/231 0/190 0/190 0/189 0/187
Permanent 213/187 3/191 3125/191 3418/192 197/189 0/191

Byzantine fault 187/192 3/194 0/190 0/191 0/190 0/188
Network fault 206/197 2/192 0/190 0/192 0/188 0/187

Average 333/191 2/199 925/190 851/191 40/189 0/188

Spatial replication with Round-robin—With the spatial repli-
cation approach in Exp 5 (RR), the failure rate in the perma-
nent fault is reduced from 88.5% to 56.4%. The failure rate is
reduced because there are more servers in the system. When a
server fails, the replication manager will update the availabil-
ity list and forward the requests to other servers. However,
when all the servers fail, the system will not be able to handle
the requests from the clients. For the Byzantine failure, the
failure rate is also reduced. This is because, with the Round-
robin algorithm, different servers are employed for different
requests; therefore, the failure rate is reduced.

Spatial replication with N-version programming—With the
spatial replication approach in the N-version implementation
of Exp 5, the failure rate of the Web service is greatly re-
duced. When a fault occurs in a Web service, other Web ser-
vices are still operating, from which the majority result will
be selected and returned to the client. Thus, the fault of a
Web service will be tolerated in the system. When permanent
faults occur, the failure rate is reduced from 88.5% to 31.4%
with this scheme. For Byzantine and network faults, the N-
version approach can even reduce the failure rate to zero in
our experiment. It is noted that in the N-version approach,
the failure rate is much lower than that of the Round-robin
approach. This shows the majority results are normally more
reliable than the results produced by an individual version.

Spatial replication, retry or reboot with Round-robin—In Exp
6 and 7, hybrid approaches with retry (Exp 6) or reboot (Exp
7) are conducted. We find that the failure rate is not much im-
proved comparing with that in Exp 4. However, the average
response time of the Web service is reduced.

Spatial replication, retry or reboot with N-version—In Exp 6
and 7, hybrid approaches with retry (Exp 6) or reboot (Exp 7)
are conducted. We find that the failure rate is reduced to zero.

Spatial replication with Round-robin / N-version, retry and
reboot—After performing the above experiments, we propose

Table 7. Model parameters

ID Description Value

λN Network fault rate 0.045
λ∗ Web service fault rate 0.028
λ1 Temporary fault rate 0.01
λ2 Permanent fault rate 0.001
µ∗ Web service repair rate 0.523
µ1 Temporary fault repair rate 0.954
µ2 Permanent fault repair rate 0.954
C1 Probability that the RM response is on time 0.978
C2 Probability that the server reboots successfully 0.978

a hybrid approach for improving the reliability of Web ser-
vices, including spatial redundancy, retry and reboot. The
reliability of the system is improved most significantly by
this approach: The failure rate of the system is reduced from
88.5% to 0 and the average response time is shortened. The
replication manager keeps checking the availability of the
Web services. When there is a server fault, other servers are
responsible for handling the requests. At the same time, the
failed server will reboot. Thus, the response time for handling
the requests is greatly reduced. In Exp 8, it is demonstrated
that this approach results in the lowest failure rate. This in-
dicates that combining spatial and temporal redundancy in a
hybrid approach achieves the highest gain in reliability im-
provement of the Web service.

6. RELIABILITY MODELING

We develop a reliability model of the proposed Web service
paradigm using Markov chains [33]. The model is shown
in Figure 10. The reliability model is analyzed and verified
using the SHARPE tool [34]. The Markov chains model is
developed to analyze the system reliability.

In Figure 10(a), the state s represents the normal execution
state of the system with n Web service replicas. In the event
of a fault causing the primary Web service to fail, the system
will either go into the other states (i.e., s − j, which repre-

10

Figure 10. Markov chain based reliability model for the proposed system

sents the system with n − j working replicas remaining, if
the replication manager responds on time), or it will go to the
failure state F with conditional probability (1 − C1). λ∗ de-
notes the failure rate, i.e., the rate of occurrence of failures
from which recovery cannot be completed, and C1 represents
the probability that the replication manager responds in time
to switch to another Web service.

When the failed Web service is repaired, the system will go
back to the previous state, s − j + 1. µ∗ denotes the rate at
which successful recovery is performed in this state, and C2

represents the probability that the failed Web server reboots
successfully. λn represents the network fault rate.

States (s−1) to (s−n) in Figure 10(a) represent the working
states of the n Web service replicas and the reliability model
of each Web service is shown in Figure 10(b). There are two
types of faults simulated in our experiments: P1 denotes a
temporary fault and P2 denotes a permanent fault. If a fault
occurs in the Web service, either the Web service can be re-
paired with µ1 (to enter P1) or µ2 (to enter P2) repair rates
with conditional probability C1. If the fault cannot be recov-
ered, the system goes to the next state (s − j − 1) with one
less Web service replica available. If the replication manager
cannot respond in time, it will go to the failure state. From
the graph, two formulae can be obtained:

λ∗ = λ1 × (1 − C1)µ1 + λ2 × (1 − C2)µ2 (1)

µ∗ = λ1 × µ1 + λ2 × µ2 (2)

Reliability over Time with repair rate 0.523

Fault Rate

0.025

0.01

0.005

seconds

Figure 11. Reliability with different fault rates and repair
rates

Based on the experiments described in Section 3.3, we ob-
tain the fault rates and the repair rates of various components
in the system; the results are shown in Table 7. The relia-
bility of the system over time is further calculated with the

11

tool SHARPE. Figure 11 shows the reliability over time at
different fault rates λ∗, where the repair rate is (set at) 0.523
faults/s. Note that the fault rate obtained from the experi-
ments is 0.03 failure/s. This failure rate is measured under an
accelerated testing environment.

7. CONCLUSIONS

In the paper, we survey and address applicability of replica-
tion and design diversity techniques for reliable Web services
and propose a hybrid approach to improve the availability of
Web services. Furthermore, we carry out a series of experi-
ments to evaluate the availability, performance and reliability
of the proposed Web service system. From the experiments,
we conclude that both temporal redundancy and spatial re-
dundancy are important to the reliability improvement of the
Web service. Modeling techniques by Petri-Net and Markov
chain provide further insights of Web service system reliabil-
ity with the proposed fault tolerant mechanisms.

ACKNOWLEDGMENTS

The work described in this paper was fully supported by a
grant from an internal block grant project from the Research
Committee of the Chinese University of Hong Kong, under
Project No. 3/06C-SF.

REFERENCES

[1] S. Jones. Toward an acceptable definition of service
[service-oriented architecture]. IEEE Transactions on
Software, 22(3):87–93, May-Jun 2005.

[2] R. Bilorusets and A. Bosworth. Web services reliable
messaging protocol ws-reliablemessaging. Technical
report, EA, Microsoft, IBM and TIBCO Software, Mar
2004.

[3] N. Looker and M. Munro. Ws-ftm: A fault tolerance
mechanism for web services. Technical report, Univer-
sity of Durham, 19 Mar 2005.

[4] D. Liang, C. Fang, and C. Chen. Ft-soap: A fault-
tolerant web service. Technical report, Institute of In-
formation Science, Academia Sinica, 2003.

[5] D. Liang, C. Fang, and S. Yuan. A fault-tolerant ob-
ject service on corba. Journal of Systems and Software,
48:197–211, 1999.

[6] M. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rou-
vellou, and P. Narasimhan. Thema: Byzantine-fault-
tolerant middleware for web-service application. In
Proc. of IEEE Symposium on Reliable Distributed Sys-
tems, Orlando, FL, Oct 2005.

[7] A. Erradi and P. Maheshwari. A broker-based approach
for improving web services reliability. In Proc. of IEEE
International Conference on Web Services, volume 1,
pages 355–362, 11-15 Jul 2005.

[8] W. Tsai, Z. Cao, Y. Chen, and R. Paul. Web services-
based collaborative and cooperative computing. In Proc.

of Autonomous Decentralized Systems, pages 552–556,
4-8 Apr 2005.

[9] C. Zimmermann. The Impact of Mechanical Defects on
the Reliability of Solar Cells in Aerospace Applications
. IEEE Transactions on Device and Materials Reliabil-
ity, 6(3):486–494, Sept 2006.

[10] H. Celebi, M. Sahin, H. Arslan, J. Haque, E. Prado, and
D. Markell. Ultrawideband design challenges for wire-
less chip-to-chip communications and interconnects. In
Proc. of IEEE Aerospace Conference 2006, 4-11 Mar
2006.

[11] http://www.relex.com/products/fracas.asp

[12] B. Kim. Reliability analysis of real-time controllers
with dual-modular temporal redundancy. In Proc. of the
Sixth International Conference on Real-Time Comput-
ing Systems and Applications (RTCSA), pages 364–371,
13-15 Dec 1999.

[13] K. Shen and M. Xie. On the increase of system reli-
ability by parallel redundancy. IEEE Transactions on
Reliability, 39(5):607–611, Dec 1990.

[14] D. Leu, F. Bastani, and E. Leiss. The effect of statically
and dynamically replicated components on system re-
liability. IEEE Transactions on Reliability, 39(2):209–
216, 1990.

[15] M. R. Lyu, editor. Software Fault Tolerance. John Wiley
and Sons Inc, Apr 1995.

[16] A. Avizienis and L. Chen. On the implementation of n-
version programming for software fault-tolerance dur-
ing program execution. In Proc. of First International
Computer Software and Applications Conference, pages
149–155, 1977.

[17] A. Avizienis and J. Kelly. Fault tolerance by design di-
versity: Concepts and experiments. IEEE Transactions
on Computer, pages 67–80, Aug 1984.

[18] B. Randell. System structure for software fault tol-
erance. IEEE Transactions on Software Engineering,
1(2):220–232, 1975.

[19] P. Townend, P. Groth, N. Looker, and J. Xu. Ft-grid:
A fault-tolerance system for e-science. In Proc. of the
UK OST e-Science Fourth All Hands Meeting (AHM05),
Sept 2005.

[20] P. Chan, M. Lyu, and M. Malek. Making services
fault tolerant. In Proc. of the 3rd International Ser-
vice Availability Symposium, volume 4328, pages 43–
61, Helsinki, Finland, 15-16 May 2006. Springer.

[21] P. Chan, M. Lyu, and M. Malek. Reliable web services:
Methodology, experiment and modeling. In Proc. of
IEEE International Conference on Web Services, Salt
Lake City, Utah, USA, 9-13 Jul 2007.

[22] M. Shreedhar and G. Varghese. Efficient fair queueing
using deficit round-robin. IEEE/AMC Transactions on
Networking, 4(3):375–385, Jun 1996.

12

[23] M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vin-
gralek. Selection algorithms for replicated web servers.
In Proc. of Workshop on Internet Server Performance
98, Madison, WI, Jun 1998.

[24] http://mars.jpl.nasa.gov/msl/mission/sc edl.html

[25] A. Arkin, S. Askary, S. Fordin, W. Jekeli, and et. al.
Web Service Choreography Interface (WSCI) 1.0. W3C,
http://www.w3.org/TR/wsci/, 2002.

[26] J. Peterson. Petri Net Theory and the Modeling of Sys-
tems. Prentice-Hall, 1981.

[27] A. Alves and et. al. Web services business process
execution language version 2.0. In http://www.oasis-
open.org/committees/documents.php, 2006.

[28] N. Looker, M. Munro, and J. Xu. A comparison of net-
work level fault injection with code insertion. In Proc. of
the 29th Annual International Computer Software and
Applications Conference 2005, volume 1, pages 479–
484, 26-28 Jul 2005.

[29] N. Looker and J. Xu. Assessing the dependability of
soap-rpc-based web services by fault injection. In Proc.
of the 9th IEEE International Workshop on Object-
oriented Real-time Dependable Systems, pages 163–
170, 2003.

[30] Y. Yan, Y. Liang, and X. Du. Controlling remote in-
struments using web services for online experiment sys-
tems. In Proc. of IEEE International Conference on Web
Services (ICWS) 2005, 11-15 Jul 2005.

[31] M. Castro and B. Liskov. Practical byzantine fault toler-
ance and proactive recovery. ACM Trans. Comput. Syst.,
20(4):398–461, 2002.

[32] L. Lamport, R. Shostak, and M. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[33] K. Goseva-Popstojanova and K. Trivedi. Failure corre-
lation in software reliability models. IEEE Transactions
on Reliability, 49(1):37–48, Mar 2000.

[34] R. Sahner, K. Trivedi, and A. Puliafito. Perfor-
mance and Reliability Analysis of Computer Sys-
tems. An Example-BasedApproach Using the SHARPE
Software Package. Kluwer Academic Publishers,
Boston/London/Dordrecht, 1996.

BIOGRAPHY

Pat Pik Wah Chan received the B.E.
degree in Computer Engineering, in
2002, and the M.Phil. degree in Com-
puter Science and Engineering, in 2004,
from The Chinese University of Hong
Kong, Shatin, Hong Kong. She currently
is the Ph.D student in the Department of
Computer Science and Engineering, The

Chinese University of Hong Kong, Shatin, Hong Kong. Her
research interests include reliability, Web services related re-
search, multimedia security, digital watermarking, video pro-
cessing and augmented reality.

Michael R. Lyu received the B.S. de-
gree in electrical engineering from Na-
tional Taiwan University, Taipei, Tai-
wan, China, in 1981, the M.S. degree in
computer engineering from University
of California, Santa Barbara, in 1985,
and the Ph.D. degree in computer sci-
ence from University of California, Los

Angeles, in 1988.
He is currently a Professor in the Department of Computer
Science and Engineering, The Chinese University of Hong
Kong, Shatin, Hong Kong. He was with the Jet Propulsion
Laboratory as a Technical Staff Member from 1988 to 1990.
From 1990 to 1992, he was with the Department of Elec-
trical and Computer Engineering, The University of Iowa,
Iowa City, as an Assistant Professor. From 1992 to 1995, he
was a Member of the Technical Staff in the applied research
area of Bell Communications Research (Bellcore), Morris-
town, New Jersey. From 1995 to 1997, he was a Research
Member of the Technical Staff at Bell Laboratories, Murray
Hill, New Jersey. His research interests include software re-
liability engineering, distributed systems, fault-tolerant com-
puting, wireless communication networks, Web technologies,
digital libraries, and E-commerce systems. He has published
over 150 refereed journal and conference papers in these ar-
eas. He received Best Paper Awards in ISSRE98 and ISSRE
2001. He has participated in more than 30 industrial projects,
and helped to develop many commercial systems and soft-
ware tools. He was the editor of two book volumes: Software
Fault Tolerance (New York: Wiley, 1995) and The Handbook
of Software Reliability Engineering (Piscataway, NJ: IEEE
and New York: McGraw-Hill, 1996).
Dr. Lyu initiated the First International Symposium on Soft-
ware Reliability Engineering (ISSRE) in 1990. He was the
General Chair for ISSRE2001, and the WWW10 Program
Co- Chair. He has been frequently invited as a keynote or
tutorial speaker to conferences and workshops in U.S., Eu-
rope, and Asia. He was an Associate Editor of IEEE Trans-
actions on Reliability, IEEE Transactions on Knowledge and
Data Engineering, and Journal of Information Science and
Engineering. Dr. Lyu is a Fellow of IEEE and a Fellow of
AAAS.

13

