Direct Spatial Search on Pictorial Databases
Using Packed R-trees

Nick Roussopoulos

and

Daniel Leifker

Department of Computer Science
Umversity of Maryland
College Park, Maryland 20742

Abstract

Pictorial databases require efficient and direct spatial search based on the analog form of spatial
objects and relationships instead of search based on some cumbersome alphanumeric encodings of the pic-

tures
ships found on pictures

R-trees (two-dimensional B-trees) are excellent devices for indexing spatial objects and relation-
Their most important feature i1s that they provide high level object orented
search rather than search based on the low level elements of spatial objects
efficient 1nitial packing techmque for creating R-trees to index spatial objects

This paper presents an
Since pictonal databases

are not update intensive but rather static, the benefits of this technique are very significant

1. Introduction

Pictorial databases have been introduced for
more than a decade now Chang [Chang 1981] pro-
vides a survey of most of the attempts 1n this
area The techniques used in the design, imple-
mentation and access languages of pictorial data-
bases were 1nfluenced by the corresponding tech-
niques 1n alphanumeric databases, but, many of
the researchers discovered that these techniques
had to be extended in several respects [Chang &
Fu 1981], [Chang & Kumi 1981], [Lin & Chang
1980}, [Tang 1980] Some other researchers felt
that the capabilities of these approaches are not
adequate because they are merely providing simple
table look-ups of spatial facts and vector-based
displays of digitized map data [McKeown 1983a,b]
McKeown feels that more advanced query process-
Ing capabilities are necessary, 1ncluding pre-
computation and utilization of spatial relation-
ships, dynamic computation of spatial relation-
ships from the pictures, and other speciahized
features which can be classified as expert routines
for special purpose picture manipulation tasks

Permission to copy without fee all or part of this matenal 1s granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice 1s given that copying 1s by
permusston of the Association for Computing Machinery To copy
otherwise, or to republish, requires a fee and/or specific permission

We believe that pictorial and alphanumeric
databases must be integrated but the representa-
tion and processing of the two must be clearly dis-
tinguished First, pictures are not naturally
representable in alphanumeric encodings and they
should, therefore, be presented to the user 1n their
analog form Furthermore, user queries searching
for pictorial objects and spatial relationships
among them must be direct, specified 1n terms of
the analog form This allows the user to do
direct manipulations on the pictorial database
Alphanumeric data associated with pictures can be
displayed on or beside the picture Second,
although the manipulation language must combine
powerful features for handling pictures and
alphanumeric data, 1t should not embed pictorial
access features and spatial operators into an
alphanumeric data manipulation language
Instead of forcing the pictorial syntax specification
to fit a preexisting alphanumeric language, the
user 1nterface should naturally coordinate the
query specification that addresses the pictorial
part with the one that addresses the alphanumeric
part But each part must have whatever syntax is
natural for handling 1t, which 1mplies that the pic-
torial syntax must be developed from the begin-
nng with no compromises to fit existing
alphanumeric query language Third, the process-
1ng of pictures which requires special purpose pro-
cessors and tailored indexing techniques must be
left outside the database system processor so that

© 1985 ACM 0-89791-160-1/85/005/0017 $00 75 these special purpose processors can be replaced,

17

modified, or improved, according to the require-
ments and the sophistication of the software and
hardware

The above three premises suggest a system
architecture that can support from a very sophisti-
cated, large and high resolution pictorial database
to a very simple one using Inexpensive graphics
hardware found in today’s micro-computers The
alphanumeric data processor and the pictorial pro-
cessor are different but they need to exchange con-
trol and data Figure 1 1 shows this architecture

From the user’s point of view, the following
1s a list of requirements that an integrated data-
base must satisfy

1 During the access of the database the user
should be able to obtain displays which show
the correspondence between the spatial
objects on the picture and the data associ-
ated with 1t The picture contains these
objects and the spatial relations among
them Therefore, 1t would be very natural to
selectively display the spatial objects satisfy-
Ing the user’s query along with other data
assoclated with them

2 The database must support direct spatial
search which locates the spatial objects 1n a
given geographic area of the picture This
accommodates queries of the form ”“Find all
the bridges 1n a given area,” where the area
1s specified on the picture by a graphics
direct data entry device

3 The database must support indirect spatial
search which locates objects based on some
non-spatial attributes and use the assocla-
tions between the spatial objects on the pic-
ture to place them on 1t This accommo-
dates queries of the form ~”Display the city
and 1ts elevation 1f the population exceeds 2
million,” where elevation 1s extracted from
an elevation map

The database must support a more advanced
user interface which allows for a direct
graphics mput specification (pointing devices
such as a mouse, joystick, etc) and output
display coordination between the pictorial
and the alphanumeric data

Direct spatial search requires more advanced
mndexing techniques [Stonebraker et al 1983]
because of the non-atomicity of spatial objects
For two-dimensional spatial objects, R-trees [Gutt-
man 1984] are excellent speed-up devices They
can be thought of as two-dimensional B-trees [Bay

18

& McCreight 1972}, and, although they are similar
1n nature to Quad-trees [Finkel & Bentley 1984],
they are more flexible and their dynamic nature
can better deal with ”“dead-space” on the pictures
The most 1mportant feature that distinguishes R-
trees from Quad-trees 1s the fact that, at the leaf
level, the former store full and non-atomic spatial
objects whereas the latter may ndiscriminately
decompose the objects into lower level pictorial
primitives such as quadrants, line segments, or,
even pixels This feature provides a natural and
high level object oriented search Similar
search 1n Quad-trees requires an elaborate recon-
struction process of the spatial objects from the
low level primitives of the leaves Furthermore,
because the storage organization of R-trees 1is
based on B-trees, they are better in dealing with
paging and disk I/O buffering [Guttman 1984]

In this paper we present a compaction tech-
nique for ”"packing” and reducing dead-space on
R-trees We show that by carefully creating the
1ndex on the spatial objects, we obtain significant
performance improvement during the search The
m1t1al construction of the index 1s not in a conflict
with the dynamic nature of the R-trees which can
then be updated 1n the usual way However, since
most of the pictorial databases are relatively
static, the benefits of this mmitial packing are very
significant

The packed R-trees have been immplemented
mm the context of PSQL [Roussopoulos & Leifker
1984], a query language for pictorial databases
which supports direct and ndirect spatial search
A brnef mtroduction of PSQL 1s given 1 Section 2
Section 3 deals with the compaction of R-trees and
their use for direct spatial search Section 4 con-
tains the conclusions

2. PSQL - A Query Language for Pictorial
Databases

PSQL 1s a relational based language for
retrieving information from a pictorial database
It extends the power of SQL [Chamberlin et al
1976] for retrieving alphanumeric data by allowing
direct spatial search ‘The pictorial database main-
tains the associations between the spatial and
alphanumeric objects This is necessary to sup-
port direct spatial and 1ndirect alphanumeric
search

2.1. Data Definition in PSQL

PSQL supports pictorial domains whose ele-
ments are objects found on pictures Examples of
these objects include geographic points on a map,

highway segments, geographic regions, etc FEach
domain has 1ts own pictorial representation and
form Pictornnal domains have their own com-
parison operators for comparing their elements
For example, regions have operators, such as cov-
ers, overlaps, etc Pictorial domams also have
functions defined on them which compute some
simple or aggregate attribute A simple function
for a region object 1s area which computes 1its
area An aggregate function on a set of highway
segments 1s northest which finds the northest
coordinates of any point in a highway

A pictorial domain m PSQL can be thought
of as an abstract data type The comparison
operators and functions defined on a pictorial
domain hide from the user the low level implemen-
tation detaills which deal with the alphanumeric
encodings of the domain As can be seen from the
above examples, functions defined on pictorial
domains are very specific to the application and
that any attempt to mnclude all useful ones 1n
PSQL or 1n any other language would be pointless
Instead, the language must have capabilities for
user-defined (application-defined) extensions that
can be invoked from the pictorial language

Relations can be defined over alphanumeric
and/or pictorial domains Every tuple models rela-
tionship among those alphanumeric and pictorial
objects The relation columns that correspond to
alphanumeric domains are indexed the usual way
The columns of pictorial domains are indexed by
the R-trees, see section 3, and thus each pictorial
domain element that corresponds to a tuple of the
relation appears on a leaf-node of the R-tree

PSQL 1mplements these associations between
alphanumeric and pictorial domains using a back-
ward (unique) identifier of type pointer {Powell &
Linton 1983], [Zaniolo 1983] which points to the
area on the picture (to the leaf-node of the R-
tree) ‘These 1dentifiers are computed when the
relations are generated or updated The
identifier’s value (pointer-value) 1s used to select
the relation’s tuples 1n the forward direct search,
i e, when 1t retrieves using the picture Note that
a pictorial relation could be associated with more
than one picture In this case, one identifier 1s
required for each picture association of this rela-
tion This 1ncreases the complexity of the
updates, but provides higher data sharability

The 1mplementation of pictorial relations
and thelr access 1s similar to ordinary relations
with the only difference being that each pictorial
relation has an extra column named “loc” of type
pointer which stores pointers to the picture

19

cities(city,state, population,loc)
states(state, population-density,loc)
time-zones(zone,hour-diff,loc)
lakes(lake,area,volume,loc)
highways(hwy-name,hwy-section,loc)

Although the loc column takes values of type
pointer, the user can use the column name to
specify spatial relationships that the wuples must
satisfy The type of a pictorial object may be of
type “point,” as 1n citles, or "line segment,” as in
highways, or "region,” as 1n time-zones and lakes

2.2. The Retrieve Mappings
PSQL’s extended mapping 1s of the form

select <attribute-target-list>
from <relation-list >

on <picture-list >

at < area-specification >
where < qualfication>

‘When specified, the on-at-clause selects one
area on an picture and uses 1t 1n narrowing down
the retrieval scope of the relations appearing in
the from-clause

The following example 1s a typical simple
query m PSQL

select
from
on

at
where

city,state,population,loc
cities

us-map

loc covered-by {4+4,11+9}
population > 450,000

which selects all cities in the area {4+4,11+9}
(Eastern US entered by coordinates or by a mouse)
having population greater than 450,000 Figure
2 1a shows the alphanumeric result of the query
and 21b the pictorial output displayed on a
graphics monitor Note that the object names are
displayed on the picture to assist the user to visu-
alize their correspondence

The <picture-list>> 1n the mapping 1s just a
name list, and nothing but the standard string
matching for i1dentity 1s performed However, a
geographic area on the pictures specified by the
< area-specification> 1s a location specification
which can be either a bound variable or a location
given in absolute constant coordinates or i1n vari-
able coordinates The location variable may just
be a name of a location predefined outside the
retrieve mapping Furthermore an area 1n the
< area-specification> may be followed by the spa-
t1al operators covering, covered-by, overlap-
ping, disjoined, etc, followed by another

location specification The meaning of "locl cov-
ering (covered-by, overlapping, disjoined)
loc2” 1s that locl covers (1s covered by, overlaps
with, 1s disjoined with, etc) loc2 ”

The spatial operators are comparison predi-
cates which receive two area specifications each of
which 1s either a constant or a pointer variable
whose binding during the processing points to an
area of the picture The operators return true or
false depending on whether or not the two argu-
ment locations satisfy the corresponding spatial
relation on the picture The spatial operators are
very similar to those found 1 Zamolo [Zaniolo
1983] and Stonebraker [Stonebraker et al 1984]
and can be 1mplemented by extending the stan-
dard retrieve and update capabilities of current
data manipulation languages A large variety of
tallored operators can be implemented to further
enhance PSQL It 1s our belief that the power of
the language stems directly from the integration of
SQL with these spatial operators

A very powerful operation in PSQL 1s the
juxtaposition (synthesis) of dissimilar informa-
tion stored in multiple but yet referring to the
same geographical area pictures The following
example 1llustrates this powerful feature by syn-
thesizing information found on two pictures, ie,
information about cities associated with us-map
and time-zones assoclated with a time-zone-map to
obtain cities together with their time-zone

select city,zone

from cities,time-zones

on us-map,time-zone-map

at cities loc covered-by time-zones loc
Figure 2 2a and 2 2b show the two maps and Fig-
ure 22c¢ the juxtaposition of two The

alphanumeric data consists of the complete rela-
tions citles and time-zones displayed next to each
other if the geographic area of one spatial object
(caty 1n this case) 1s covered by the geographic
area of the other (time-zone) Juxtaposition 1s
performed by simultaneous search on the two (or
more) spatial organmizations which correspond to
the same area The entries can be juxtaposed 1If
their associated locations satisfy the at-clause
The simultaneous use of several spatial organiza-
tions 1s analogous to the use of two or more secon-
dary 1ndexes during the query processing where
the 1ntersection of the 1ndices speeds up the
search

Juxtaposition is a very powerful operator for
pictorial databases It 1s somehow similar to the
relational join operator For the jJomn to be mean-
mgful, the tuples of the two relations must refer to

20

the same entity, (see [Kent 1979] and [Rousso-
poulos 1984]) For the juxtaposition, 1t 1s
sufficient that the two operand pictures refer to
the same geographic area which in this case plays
the role of the entity (”geographic join”)

PSQL mappings can have several nested lev-
els by mapping from a deeper level to the next
level The query below 1llustrates the location
binding of two nested mappings The state loca-
tion passed from the interior level 1s used to direct
the search 1n the exterior one to produce those
lakes 1n the FEastern states which are within
(covered by) the boundary of some state

select lake,area,lakes loc
from lakes

on lake-map

at lakes loc covered-by

state loc

states

on state-map

at states loc covered-by {4+4,11+9}

The binding of the top level window 1s dynami-
cally done during the evaluation of the query

PSQL queries are preprocessed and
translated into ordinary SQL entries The only
additional requirement from SQL is the capability
of executing system defined procedures from
within the where-clause This feature 18 used to
call the spatial operators and functions during the
execution of the query

The output of PSQL queries 1s directed to
two output devices The graphical output device
displays the area of the picture containing the
qualifying spatial objects and the standard termi-
nal displays the alphanumeric data This 1s very
useful for indirect spatial search because 1t allows
the user to simultaneously visualize the correspon-
dence between data about spatial objects and their
picture

select
from

2.3. Database Updates

Updates of pictorial relations may 1involve
partial reorgamzation of the associated pictorial
1ndex This requires that an 1nsertion or
modification of a tuple should include spatial
information for updating each of the spatial index
assoclated with the updated relation The reor-
ganization of the spatial index 1s discussed 1n the
following section

3. R-trees: The Foundation for the Direct
Search of PSQL

PSQL has 1ts foundations on SQL and a data
structure known as an R-tree Orniginally defined
by Guttman [Guttman 1984], R-trees can be
loosely described as higher-dimensional generaliza-
tion ot B-trees [Bayer & McCreight 1972] It 1s
appropriate that R-trees should be used 1n the
organization of spatial databases, since the data
objects of Interest can be accurately represented in
a form analogous to their spatial nature This sec-
tion will investigate several properties of R-trees 1n
general, and describe ways 1n which spatial data-
bases may be organized by means of R-trees

As defined by Guttman, leaf-nodes of the R-

tree contain entries of the form
(1, tuple-1dentifier)

where ”tuple-identifier” 1s a pomnter to a data
object (in PSQL, data objects are pointers to
tuples within relations), and I i1s an n-dimensional
minimal rectangle which bounds 1ts constituent
data objects The possibly non-atomic spatial
objects stored at the leaf level are considered
atomic, as far as the search 1s concerned, and, in
the same R-tree, they are not further decomposed
mnto 1ts pictorial primitives, 1e 1nto quadrants,
line segments, or pixels

Non-leaf R-tree nodes contain entries of the

form
(I, child-pointer)

where ”child-pointer” is a pointer to successor
node in the next level of the R-tree, and I 1s a
mnimal rectangle which bounds all the entries in
the descendent node The term "branching fac-
tor” can be used to specify the number of entries
per node, each node of an R-tree with branching
factor four, for example, points to a maximum of
four descendents (among non-leaf nodes) or four
tuples (among the leaves) For 1llustrative pur-
poses 1n this section, we shall restrict our attention
to 2-dimensional R-trees with a branching factor
of four Such a small branching factor of four
would possibly be undesirable 1n a practical appli-
cation However, a factor of four greatly facili-
tates the presentation of the concepts that follow,
and extensions to higher branching factors (that
fill a logical disk block) are readily apparent

When a spatial organization on a relation 1s
defined, an R-tree 1s constructed the same way a
B-tree 1s for 1indexing The only difference
between the two 1s that the spatial relationships
among the objects represented by the relation
tuples may not necessarily be part of the values
stored 1n the tuple itself and thus they must be

21

provided externally (via another file created using
a cursor, mouse, or other graphic input device)
[This 1s not necessary for a B-tree because their
organization 1s completely specified by the values
found 1n the tuple | The externally provided spa-
ti1al organization should not be thought of as a
weakness but, on the contrary, it provides further
flexibility to the spatial database For example,
one may choose to mmclude 1n the tuple all the
information needed to infer their spatial relation-
ships As for point spatial objects, the X,Y coordi-
nates are adeguate, minimal and may be useful to
the user However, for more complex objects, such
as regions with no canonical shapes and sizes, the
encoding of their complete spatial specification
may be of no interest to the user who accesses by
”pointing” to them or by their name 1n order to
retrieve information

In a spatial database 1t 1s convenient to clas-
sify data objects as ”points,” ”segments,” or
”"regions” Figure 3 1 shows a partial R-tree of the
spatial relation of cities in the continental United
States As far as the spatial organization of this
example database is concerned, the spatial objects
citles are viewed as points Figure 3 2, on the
other hand, shows how U S states are arranged as
regions using R-trees Since the leaf nodes of an
R-tree contaln pointers to tuples and not the
actual tuples themselves, points and regions may
be freely intermixed within any R-tree

Using PASCAL-like syntax, leaf and non-leaf
nodes of an R-tree with a branching factor of four
can be easily defined
type ENTRY = record

X1,X2,Y1,Y2 1nteger,
POINTER integer,
end,
NODE = record
CLASS (leaf, non_leaf),
DESC array [1 4] of ENTRY,
VALID integer,
end,

The value of the CLASS fleld identifies the
node as leaf or non-leaf The rectangle bounded
by the lines x=X1, x=X2, y=Y1, and y=Y2 is
minimal and bounds all the data objects in all des-
cendent nodes (not only immediate successors)
Pointers to those descendent objects are contained
iIn POINTER and are interpreted as pointers to
other R-tree nodes 1if CLASS 1s "non_Jleaf” and to
database tuples iIf CLASS 1s "leaf” Since not all
DESC pointers may be active for any given node,
the 1nteger VALID records the number of valid
pointers By convention, elements of the DESC

array are allocated as a stack with VALID serving
as the stack top The entire R-tree structure can
be declared as

var RTREE array [1 MaxNodes] of NODE,
where RTREE[1] 1s arbitrarily chosen as the
root

3.1. Direct Spatial Search

R-trees offer an enormous potential for
search pruming, so many types of spatial queries
can be processed with unusual elegance and
efficiency As an example, we present an adapta-
tion of Guttman’s recursive search algorithm for
answering queries of the type ”List all points and
regions within target window < target-window>"

Procedure SEARCH(N 1nteger),
var K integer,
begin
if RTREE[n] CLASS = non_leaf then
begin {recursively search feasible descendents}
for k =1 to RTREE[n] VALID do
if INTERSECTS(RTREE[n] DESC[K])
then SEARCH(RTREE[n] DESC[k] POINTER)
end
else
begin {node N 1s a leaf}
for k =1 to RTREE[n] VALID do
if WITHIN (RTREE[n] DESC[k]) then

DISPLAY_TUPLE(RTREE(n] DESC[k] POINTER)

end,
end,

Presumably the target window 1s stored 1n a
global data structure, the Boolean function
INTERSECTS returns TRUE if its argument
entry intersects the target window and FALSE
otherwise Similarly, the function WITHIN
returns TRUE if the argument entry 1s contained
within the target window and FALSE otherwise
The statement SEARCH(1) will invoke SEARCH
on the root node of the R-tree and cause all data
objects within the target window to be displayed

For any set of points {P1, P2, , Pn} where
each P1 1s a pair (x1, yi), deflne the ”“minimal
bounding rectangle” or MBR, written (P1, P2, |,
Pn) as the rectangle bounded by the lines

x =mm {x1} y= mm {n}

1<1<n 1<1<n
x = max {x1} y = max {yn}
1<1<n 1<1<n

A minimal bounding rectangle for a set of
regions can be defined analogously It 1s clear that

22

the overall organization and density of the R-tree
greatly 1nfluences the efficiency of the search Fig-
ure 3 3 shows the mimnimal bounding rectangles
assoclated with the first-level entries of the root
node of an R-tree Answering the query "List all
citles within region W” may require substantially
more searching than 1s tolerable, because region W
intersects all the root entries and the search can-
not yet be pruned If this overlap phenomenon
occurs with any regularity, the advantages of R-
tree organization can be greatly dimimished or
even lost

‘While considering the performance of R-tree
searching, therefore, we ntroduce the 1nformal
concepts of “coverage” and “overlap” “Cover-
age” 15 defined as the total area of all the MBRs of
all leaf R-tree nodes, and "overlap” 1s defined as
the total area contained within two or more leaf
MBR’s Obviously, efficient R-tree searching
demands that both overlap and coverage be
minimized, although overlap seems to be the more
critical of the two 1ssues

3.2.
trees

Theoretical Issues in Organizing R-

We now return to Guttman’s original paper
[Guttman 1984] and examine the algorithms used
to construct an R-tree Since Guttman wishes R-
trees to be dynamic structures (such as B-trees)
that need no periodic reorganization, he requires

(1) Every node except the root must be "m-
filled” That is, each node must contain
between m and M entries where M 1s the
maximum number of entries that will fit into
one node, and m<M/2 1s a parameter speci-
fying the minimum number of entries per

node

(2) New data objects to be inserted must be
added to pre-existing R-tree leaves Inser-
tion of the very first object 1s the only excep-

tion

Guttman’s INSERT algorithm for inserting
new objects is designed to create as little addi-
tional coverage as possible, but requirement (2)
can sometimes cause excessive amounts of "dead
space” that slows down R-tree searching To see
this, consider the eight mitial points 1 Figure
3 4a Clearly, the points could be grouped as
shown 1n Figure 3 4b to yleld two tightly-packed
leaf nodes with as httle coverage as possible
However, 1If the points are inserted using INSERT,
as 1 Figure 3 4c¢, requirement (2) will cause three

leaf nodes to be created with much useless space
In the middle This 1s a simplistic example, but 1t
does demonstrate a situation that should be
avolded whenever possible

One might very reasonably ask, then,
whether INSERT 1s appropriate for constructing
the 1nitial database Specifically, 1if we are dealing
with spatial databases that remain relatively static
over time (such as large chartographic databases),
can we not design a pre-processing algorithm that
will pack the 1mmtial set of data objects as tightly
as possible, mintmizing coverage and overlap, and
thus allow for very efficient searching?

Before attempting to design an algorithm
that will pack data objects with zero overlap, 1t
would be helpful to know whether zero overlap
can always be achieved for any arbitrary set of
data objects We first examine the case of point
objects 1n an R-tree with branching factor four

For any finite set of points
S={P1,P2, ,Pn}={(x1,y1),(x2,y2), (xn,yn)}
define the function of F as

F(8) = {x x,y) € s}

where the vertical bars denote cardinality That
15, F(S) 1s the total number of distinct x-
coordinates among all the points in S Now define
the function Fa(S) as

Fa(S)=F(S rotated counter clockwise through
the origin by the angle)

Clearly, F2n(S)=F0(S)=F(S) for all S In
general, however, Fa(S) will vary as o ranges from
0 to 2r We now ask, for any S, whether an a can
be found such that Fa(S) = ||

LEMMA 3.1: For any finite set of points S 1n
the plane, there exists an angle o such that
Fo(s)=ls|

PROOF: Consider all the angles a such that
Fa(S)#S Each pair of ponts (x1,y1), (x1,¥1), 1541,
1n S umgquely determines the line

Y-yl

- (x-x1)

X)-X1

if x15%x), and the lne x=x1 If x1=x3 If x15%4x],
then a tedious calculation shows that there exists
an angle « such that a rotation of S by a will
cause the rotated points (x1,yi), (x),y)) to have
1dentical x-coordinates (see Figure 35) Since
Fa(S) 1s now by definition at least one less than Isl,
Fa(S)74sl Since S 1s finite, there are at most Isl/2
angles a such that Fa(S)743| (possibly fewer 1f the
points In S are arranged with any degree of col-
Iinearity) However, there are an infinite number

y-yi=

23

of angles a by which S may be rotated, hence 1t
follows that there are an infinite number of angles
a such that Fa(S) = Isi

The zero overlap theorem can now be stated
and proved The proof 1s given only for an R-tree
with branching factor of four, but other cases are
proved stmilarly

THEOREM 8.2: Given any fimite set of points S
1n the plane, there exists [ISI/4] mnmmal bounding
rectangles (MBRs) such that each MBR contains
not more than four points and yet all the MBRs
are disjoint

PROOF: Without loss of generality we may
assume that [S| 1s an integer multiple of four
Rotate S about the origin until each point has a
distinct x-coordinate By Lemma 3 1, such a rota-
tion 1s guaranteed to exist Arrange the points by
increasing x-coordinates {P1, P2, , Pn} and set

MBR1=(P1,P2,P3,P4),
MBR2=(P5,P6,P7,P8),

MBRn/4=(Pn-3,Pn-2,Pn-1,Pn)

By definition, MBR1 1s bounded on the right by a
point that 1s strictly less than any point 1n any
MBR; for j>1, also, MBRI1 1s bounded on the left
by a point that is strictly greater than any point
1n any MBRk for k<1 Hence the intersection of
MBR1 and MBR; 1s zero for all 154]

Unfortunately, the zero overlap theorem fails
when the data objects have positive area Once
again, we prove this for the case of branching fac-
tor four

THEOREM 3.8: For any finite set of disjoint
regions in the plane, there does not always exist a
set of mimimal bounding rectangles (MBRs) such
that

(1

Each region 1s contained wholly within
exactly one MBR, and

(2)

Each MBR bounds more than one region, but
not more than four regions, and

The 1ntersection of all the MBRs has zero
area

PROOF: By counterexample Assume that con-
ditions (1), (2), and (3) of Theorem 3 3 hold for all
sets of disjoint regions, 1n particular they then
must hold for the set of skewed rectangular
regions shown m Figure 36 By condition (1),
region RO must be contained within one MBR, call
1t MBRO By condition (2), MBRO must also
bound at least one other region but no more than
three other regions An exhaustive enumeration

(3)

shows that any other regions we select for inclu-
sion 1In MBRO will necessarlly include parts of
other unwanted regions This contradicts condi-
tion (3) and proves Theorem 3 3

Although 1t has been shown that zero over-
lap can be achieved for any set of points, there are
several legitimate objections that can be raised
with these results as applied to the practical con-
struction of R-trees

(1) Attamning zero overlap may require rotating
the orientation of the entire database, and
this may not always be convenient or even
possible

(2) Theorem 32 assumed 1deal conditions on a
continuous plane and may not always hold 1n
a digitized database

(3) Zero overlap may be attained only at the leaf
level of the R-tree The next level contains
MBR’s of the leaf MBR’s, and therefore
represents an organization of region data
objects Even though these leaf MBR’s may
have zero overlap, Theorem 3 3 shows that
zero overlap for regions (1 e, the next higher
level of the R-tree) 1s sometimes 1mpossible

(4) Some region data objects have inherent over-
lap, such as counties within states

(6) Although overlap may be minimized, the i1ssue
of coverage remains Figure 3 7a shows a set
of leaf R-tree nodes Although there 1s zero
overlap, the coverage 1s unacceptably high A
more reasonable groupmg 1s shown in Figure
37b The simultaneous minimization of both
coverage and overlap is a complex task

3.3. The Packing Algorithm

These problems are addressed by means of
algorithm PACK, which attempts to mnimize
both coverage and overlap PACK takes as input
a set of data objects and produces as output a
near-optimally packed R-tree, but requires no spe-
clal rotation or orientation of the database frame
of reference

Since we assume that the spatial database
will remain relatively static (maps of geographical
regions, for example, do not require frequent 1nser-
tions or updates), we strengthen Guttman’s
requirement that R-tree nodes be at least m-filled
by stipulating that all nodes are to be packed as
fully as possible For convenience, we agaln
assume that the node branching factor 1s four, and
also that the total data objects at any R-tree level
13 an Integral multiple of four This would be
highly unlikely in any real application, but the

24

"multiple of four” assumption allows us to
dispense with the trivial special cases of one
partially-filled node for leftover entries per level

Algorithm PACK can be written as a recur-
sive function, 1ts sole argument 1s DLIST, a list of
data objects to be packed NN 1s a nearest neigh-
bor function which takes two arguments
NN(DLIST,I) return the 1item in the hst DLIST
which 18 spatially closest to item I and has the
additional effect of deleting that i1tem from DLIST
A very high level description of the algorithm fol-
lows

Recursive Function PACK (DLIST) tnode,

{Returns a pointer to the root node
of a fully-packed R-tree containing
all the data 1tems i DLIST }

begin
1if DLIST contains four data objects
then begin
Aliocate a pointer to a new R-tree node, NO,
Cause poimnters of NOT to point to 1tems of DLIST,
RETURN (INO),
end
else
begin
Order objects of DLIST by some spatial crit-
erion, {e g ascending x-coordinate}
NLIST =(), {initialize as the empty hst}
while DLIST is not empty do
begin
I1 =first object from DLIST,
DLIST =ta1l(DLIST), {delete 1st object}
12 =NN(DLIST,11),
13 =NN(DLIST,I1),
14 =NN(DLIST,I1),
Allocate a new R-tree node, N1,
Cause pointers of N1 to point to 11,12,

I3 and I4,
LIST =append(NLIST,N1),{add new node}
end,
RETURN(PACK(NLIST)),
end

end

A sumple example should 1illustrate the prin-
ciple by which PACK operates Figure 3 8a shows
a set of points representing cities on a map of the
United States In the first call of PACK, DLIST 1s
the entire list of cities stored as coordinate pairs
(perhaps latitude and longitude) Since there are
more than four such pairs, the ELSE-clause 1s exe-
cuted, and the cities are grouped by mnearest

neighbor (Figure 3 8b) PACK 1s then called
recursively using the lhist of leaf MBR’s as data
objects (Figure 3 8c), and this process continues,
working ever backwards, until the root 1s finally
reached and created As defined here, PACK
refuses to make any distinctions between leaf and
non-leaf nodes, although such a distinction 1s criti-
cal and must be made 1n any practical implemen-
tation It should be noted that i1t may be prefer-
able to select the 4 1tems simultaneously from
DLIST such that the area of the resulting associ-
ated MBR 1s mimimized, but this could be com-
binatorally explosive

It 1s beyond the scope of this paper to prove
any abstract formal properties of PACK, but
empirical results have repeatedly demonstrated
that the algonthm constructs very tightly-packed
R-trees which readily lend themselves to efficient
searching

3.4. The Update Problem

The basic assumption of PACK 1s that data-
bases that are created for the first tame must be
efliciently organized Another assumption 1s that
the database will remain relatively static How-
ever, the database need not be absolutely static
the INSERT and DELETE algornithms given by
Guttman can still be used to insert and delete
data objects Indeed, 1t is intuitaively appealing to
suppose that INSERT and DELETE will perform
well on a PACKed R-tree INSERT, for example,
mserts a new data object into the leaf that
requires the least enlargement, and, if that leaf 1s
already fllled, propagates node sphits upward
toward the root Such splits, of course, would be
mevitable with the first few 1nsertions, since the
packed nodes are already filled However, R-trees
created by PACK are presumed to exist in at least
a tentatively final state INSERT may thus select
from a large number of leaves so that the ”least
enlargement” 1s minimized Hence, INSERT (and
analogously DELETE) and PACK can complement
each other, and such an combination can be used
effectively 1n the creation and maintenance of
dynamic R-trees

3.5. Empirical Results

We ran some experiments comparing
Guttman’s INSERT and PACK The experitments
were performed 1n a straightforward fashion The
parameter J, specifying the number of data
objects, was allowed to range over selected values

25

from 10 to 900 Data objects were poimnts having
coordinates (x,y), (0<x<1000, 0<y<1000), and
were randomly generated with a uniform distribu-
tion 1n the plane FEach algorithm used the same
set of points for equal values of J to construct an
R-tree For each algorithm and each value of J,
we measured and recorded the coverage (C) and
overlap (O) of the constructed R-tree, the total
nodes within the R-tree (N), the depth (D) of the
R-tree, and the average number (A) of nodes
visited during 1000 random search queries The
search queries were of the sumple form

”Is point (x1,y1) contained 1n the database?”

and again were identical for both algorithms for
equal values of J The results of these experiments
are shown i1n Table 1

As the results show, packing the data objects
can result i1n significant savings in space and
search time

4. Conclusions

This paper presented a packing technique for
R-trees which sigmificantly improves direct spatial
search on pictorial databases This i1s achieved by
minmmizing coverage and overlap of the leaf-nodes
of the R-trees

The formal the theoretical properties of the
PACK and the search algorithms will be reported
1n a forthcoming report The search of the spatial
operators and functions employed by PSQL are
currently bemng implemented We are currently
mvestigating the possibility of dynamic invocation
of the PACK algorithm during insertions and dele-
tions to efficiently perform a “local” reorganiza-
tion This will achieve the search performance
obtained by the PACK algorithm for dynamically
reorganized R-trees

5. References

[Bayer & McCreight 1972]
Bayer, R, and McCreight, EM, "Organiza-
tion and Maintenance of Large Ordered
Indices,” Acta Informatica, Vol 1, No 3, 1972,
pPp 173-189

[Chamberhn et al 1976]
Chamberhin, DD, "SEQUEL 2 A Unified
Approach to Data Definition, Manipulation,
and Control,” IBM J Research and Develop-
ment, Vol 20, No 6, 1976, pp 560-575

[Chang 1981]
Chang, S K, "Pictorial Information Systems
Guest Editor’s Introduction,” IEEE Com-
puter, Vol 14, No 11, November 1981

[Chang & Fu 1981]
Chang, NS, and Fu, K S, "Picture Query
Languages for Pictorial Data-Base Sys-

tems,” IEEE Computer, Vol 14, No 11,
November 1981

[Chang & Kunu 1981]
Chang, SK, and Kunu, L K, ”Pictonal

Database Systems,” IEEE Computer, Vol 14,
No 11, November 1981

[Finkel & Bentley 1984]
Finkel, R A, Bentley, JL, "Quad-Trees - A
Data Structure for Retrieval on Composite
Keys,” Acta Informatica, Vol 4, 1984, pp 1-
g

[Guttman 1984]
Guttman, A, "R-TREES A Dynamic Index
Structure for Spatial Searching,” Proc of
ACM SIGMOD Conference on Management
of Data, Boston, June, 1984

[Kent 1979]
Kent, W, "Limitations of Record-Based Infor-
mation Models,” ACM Transactions on Data-
base Systems, Vol 4, No 1, 1979, pp 107-
131

[Lin & Chang 1980]
Lmn, BS, and Chang, S K, "GRAIN - A Pic-
tornal Database Interface,” IEEE Proc of the
Workshop on Picture Data Description and
Management, Asillomar, Califormia, August
1980

[McKeown 1983a]
McKeown, DM, Jr, "Concept Maps,” Dept
of Computer Science, Carnegie-Mellon Univer-
sity, Technical Report CMU-CS-83-117, April
27, 1983

[McKeown 1983b]
McKeown, DM, Jr, "MAPS The Organiza-
tion of a Spatial Database System Using
Imagery, Terrain, and Map Data,” Dept of
Computer Science, Carnegie-Mellon

26

University, Technical Report CMU-CS-83-1386,
July 17, 1983

[Powell & Linton]
Powell, M and Linton, M, ”"Database Sup-
port for Programming Environments,” Proc
Engineering Design Applications of ACM SIG-
MOD Database Week, San Jose, May 23-26,
1983

[Roussopoulos 1984]
Roussopoulos, N, ”Intensional Semantics of
the Relational Model,” Dept of Computer
Science, University of Maryland, January
1984

[Roussopoulos & Leifker 1984]
Roussopoulos, N, Leifker, D, "An Introduc-
tion to PSQL A Pictonal Structured
Query Language,” IEEE Workshop on Visual
Languages, Hiroshima, Japan, December 6-8,
1984

[Stonebraker et al 1983]
Stonebraker, M, Rubenstein, J, Guttman,
A, "Application of Abstract Data Types
and Abstract Indices,” Engineering Design &
Applications, Database Week, ACM SIGMOD,
San Jose, May 23-26, 1983

[Stonebraker et al 1984]
Stonebraker, M, Anderson, E, Hanson, E,
"QUEL as a Data Type,” Proc of ACM SIG-
MOD Conference on Management of Data,
Boston, June, 1984

[Tang 1980]
Tang, GY, "A Logical Data Organization for
the I database of Pictures an Alphanumerical
Data,” IEEE Proc of the Workshop on Pic-
ture Data Description and Management, Asi-
lomar, California, August, 1980

[Zaniolo 1983]
Zaniolo, C, "The Database Language GEM,”
Proc ACM-SIGMOD Conference on Manage-
ment of Data, San Jose, May 23-26, 1983

GUTTMAN'S INSERT PACK ALGORITHM
J C (0] D N A C 0O D N A
10 68483 43731 1 4 2217 39580 o 1 3 1424
25 74577 124311 2 12 4 800 31230 144 2 9 2 249
50 | 70718 177809 3 28 7775 | 37421 1205 2 16 2282
75 74561 229949 3 39 9 379 36152 1329 3 26 3 431
100 75234 235079 4 60 12 955 38271 994 3 35 3 645
125 77578 246084 4 73 14 024 36476 1318 3 42 3 658
150 77342 255692 4 86 14 894 40145 2729 3 51 3 784
175 79869 255523 4 103 16 277 36432 2532 3 58 3 820
200 80034 295091 4 117 17 870 33959 1394 3 68 3 873
250 79117 293730 4 142 18 585 40069 1946 3 83 3 897
300 78891 376731 4 167 20 838 38438 1527 4 102 5 397
400 82116 553650 5 233 28 935 37558 965 4 135 5 418
500 85290 698248 5 302 36 132 39820 1688 4 168 5 466
600 85253 749874 5 368 40 799 39542 2106 4 202 5 276
700 86225 852205 5 438 45 924 37016 1252 4 234 5 604
800 87418 1002339 6 507 55 462 38614 1522 4 268 5730
900 87640 1164809 6 573 63 595 38808 1512 4 302 6 071
Code J = Number of Spatial Data Objects
C == Coverage of R-tree
O = Overlap of R-tree
D = Depth of R-tree
N == Total number of nodes in R-tree
A = Average number of nodes visited
Table 1 Experimental results over 100 random search queries
US'ER
¥
ALPEA & PICTORIAL
STRUCTURED QUERY LANGUAGE
INDIRECT DIRECT
SPATIAL SPATIAL
ACCESS ACCESS
y 4
ALFHA PICTORIAL
DISPLAY DISPLAY
AN /N
\i y \n(
DATA &
ALPHA CONTROL Sl SPATIAL
PROCESSOR PROCESSOR
CONTROL
FIGURE 1.1,

27

1
Ichar tchar ireal ! S " - T .
: : & Ld_.;;s" ™ n..\
teity istate ipopulation ! ‘ﬁ' . M ——
t ! e g J
— -

ict ist tpop H — *‘:_h‘q‘ 'N"S"'::.ILLEm -1
! ! 4 BR Dot N
1JACKSONVILLE !FLORIDA ! 540,920 ! Lrsmrprerei - -
INEW ORLEANS !LOUISIANA ! 557,515 | Al T 4 -, .
{8T LOUIS {MISOURI i 453,085 1 - - -4“ x "‘
IMEMPHIS { TENNESSEE 1 546,336 | r~““ ' ' . b
INASHVILLE | TENNESSEE 1 455,651 | ‘ i ' J
! ! e - 7 e——

{ e T *TACKSOMUILLE

v RiEw Eemiz" '

LM CRLEANST '

Figure 2 la

Figure 2 1b

~1°Y
NENAG -
™ L~
— N
\
- - L N
FIGURE 2.2A
- V-T-A— N g | _;_____ N H;{-‘:E_M
= * ﬂ’). T] =4 4
Rlimnt] MmN o 281t
W R
L S -
e h
- ‘i Vad
o, -
s \
ST SXSEY
-
\\ Pl -
\
~—
FIGURE 2.2B
‘u‘i'. byt - __)_________ - - ME
{1 ° o N I 2
n o I 7 J_‘;
(§ o
g — . - A L O R
‘ - -
| _{% i 't.& -
_..._F\t.._ - \\
sy N o h Y- S
- N
A = SN
e J\\ & A N2
\ |-
T
FIGURE 2.2C

28

'

R

to dota teplee

FIGURE 3.1

dots toples

\d-_—} l‘ "

FIGURE 3.2

29

FIGURE 3 3
. .
» .
FIGURE 3 4a
&
s
FIGURE 3 4o
FIGURE 3 4c

AN

H

]

1

]

|

] .(XJ.VJ)

: Xpary) |

| '| |

i f :

. {

1 | 1

FIGURE 3.5
— ro R
FIGURE 3,6

30

F f "
FIGURE 3.7A
)
L= . 1

FIGURE 3 7B

FIGURE 3.8A

FIGURE 3.8B

FIGURE 3.8C

31

