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Abstract 

Pictorial databases require efficient and duect spatml search based on the analog form of spatial 
obJects and relatlonshlps instead of search based on some cumbersome alphanumeric encodings of the pm- 
tures R-trees (two-dimensional B-trees) are excellent devices for indexing spatial ObJects and relation- 
ships found on pictures Their most important feature 1s that they provide high level ObJect onented 
search rather than search based on the low level elements of spatial ObJects This paper presents an 
efficient initial packing technique for creatmg R-trees to index spatial ObJects Since pictorial databases 
are not update mtensive but rather static, the beneflts of this technique are very significant 

1. Introduction 

Pictorial databases have been introduced for 
more than a decade now Chang [Chang 19811 pro- 
vldes a survey of most of the attempts in this 
area The techmques used in the design, imple- 
mentation and access languages of pictorial data- 
bases were influenced by the corresponding tech- 
niques in alphanumeric databases, but, many of 
the researchers discovered that these techniques 
had to be extended in several respects [Chang & 
Fu 19811, [Chang & Kumi 19811, [Lm & Chang 
19801, [Tang 19801 Some other researchers felt 
that the capabilities of these approaches are not 
adequate because they are merely providing simple 
table look-ups of spatial facts and vector-based 
displays of digitized map data [McKeown 1983a,b] 
McKeown feels that more advanced query process- 
ing capabilities are necessary, including pre- 
computation and utdization of spatial relatron- 
ships, dynamic computation of spatial relation- 
ships from the pictures, and other speciahzed 
features which can be class&led as expert routines 
for special purpose picture manipulation tasks 
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We believe that pictorial and alphanumeric 
databases must be integrated but the representa- 
tion and processing of the two must be clearly dls- 
tmgmshed First, pictures are not naturally 
representable in alphanumeric encodings and they 
should, therefore, be presented to the user in them 
analog form Furthermore, user queries searching 
for pictorial ObJects and spatial relationships 
among them must be direct, specified m terms of 
the analog form This allows the user to do 
direct manipulations on the plctonal database 
Alphanumeric data associated with pictures can be 
displayed on or beside the picture Second, 
although the manipulation language must combine 
powerful features for handling pictures and 
alphanumeric data, it should not embed pictorial 
access features and spatial operators into an 
alphanumeric data manipulation language 
Instead of forcing the pictorial syntax speclflcation 
to At a preexistmg alphanumeric language, the 
user interface should naturally coordmate the 
query specification that addresses the pictorial 
part with the one that addresses the alphanumeric 
part But each part must have whatever syntax is 
natural for handling it, which implies that the plc- 
torial syntax must be developed from the begm- 
rung with no compromises to At existing 
alphanumeric query language Third, the process- 
ing of pictures which requires special purpose pro- 
cessors and talored mdexmg techniques must be 
left outside the database system processor so that 
these special purpose processors can be replaced, 
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modified, or improved, accordmg to the requlre- 
ments and the sophlstmation of the software and 
hardware 

The above three premises suggest a system 
architecture that can support from a very sophistl- 
cated, large and high resolution pictorial database 
to a very simple one using mexpenslve graphics 
hardware found in today’s micro-computers The 
alphanumeric data processor and the pmtorial pro- 
cessor are different but they need to exchange con- 
trol and data Figure 1 1 shows this architecture 

From the user’s point of view, the following 
1s a list of requirements that an integrated data- 
base must satisfy 

1 During the access of the database the user 
should be able to obtain displays whmh show 
the correspondence between the spatial 
obJects on the picture and the data assoc~- 
ated with it The picture contains these 
obJects and the spatial relations among 
them Therefore, it would be very natural to 
selectively display the spatial objects satlsfy- 
mg the user’s query along with other data 
associated with them 

2 The database must support direct spatial 
search whmh locates the spatial obJects in a 
given geographic area of the picture This 
accommodates quenes of the form “Find all 
the bndges m a given area,” where the area 
1s specified on the picture by a graphms 
direct data entry devme 

3 The database must support indirect spatial 
search which locates ObJects based on some 
non-spatial attnbutes and use the assocla- 
tlons between the spatlal ObJects on the pic- 
ture to place them on It This accommo- 
dates quenes of the form “Display the city 
and its elevation If the population exceeds 2 
million,” where elevation 1s extracted from 
an elevation map 

4 The database must support a more advanced 
user interface which allows for a duect 
graphms input speclflcatlon (pointing devices 
such as a mouse, joystmk, etc ) and output 
display coordination between the pictorial 
and the alphanumenc data 

Direct spatial search requires more advanced 
indexing techmques [Stonebraker et al 19831 
because of the non-atomicity of spatial obJects 
For two-dimensional spatial ObJects, R-trees [Gutt- 
man 19841 are excellent speed-up devices They 
can be thought of as twodimensional B-trees [Bay 

& McCrelght 19721, and, although they are similar 
m nature to Quad-trees [Fmkel & Bentley 19841, 
they are more flexible and then dynamic nature 
can better deal with “dead-space” on the pictures 
The most Important feature that distinguishes R- 
trees from Quad-trees 1s the fact that, at the leaf 
level, the former store full and non-atomic spatial 
obJects whereas the latter may mdlscrlmmately 
decompose the ObJects into lower level pictorial 
pnmltlves such as quadrants, line segments, or, 
even pixels This feature provides a natural and 
high level object oriented search Similar 
search in Quad-trees requnes an elaborate recon- 
struction process of the spatial obJects from the 
low level pnmltlves of the leaves Furthermore, 
because the storage orgamzatlon of R-trees 1s 
based on B-trees, they are better in dealmg with 
paging and disk I/O buffermg [Guttman 19841 

In this paper we present a compaction tech- 
nique for “packing” and reducing dead-space on 
R-trees We show that by carefully creating the 
index on the spatial ObJects, we obtain sigmilcant 
performance improvement durmg the search The 
initial construction of the index 1s not m a confhct 
with the dynamic nature of the R-trees whmh can 
then be updated m the usual way However, smce 
most of the plctonal databases are relatively 
statm, the benefits of this initial packing are very 
slgmficant 

The packed R-trees have been Implemented 
m the context of PSQL [Roussopoulos & Leifker 
19841, a query language for pictorial databases 
whmh supports dnect and indirect spatial search 
A bnef mtroduction of PSQL is given m Section 2 
Section 3 deals with the compaction of R-trees and 
then use for direct spatial search Sectlon 4 con- 
tams the conclusions 

2. PSQL - A Query Language for Pictorial 
Databases 

PSQL is a relational based language for 
retnevmg information from a pictonal database 
It extends the power of SQL [Chamberlm et al 
19761 for retneving alphanumenc data by allowing 
direct spatial search The plctorlal database mam- 
tains the associations between the spatial and 
alphanumeric objects This is necessary to sup- 
port direct spatial and mdirect alphanumeric 
search 

2.1. Data Definition in PSQL 

PSQL supports pictorial domains whose ele- 
ments are ObJects found on pictures Examples of 
these obJects include geographic points on a map, 
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highway segments, geographic regions, etc Each 
domain has Its own plctonal representation and 
form Pictonal domains have their own com- 
panson operators for comparmg their elements 
For example, regions have operators, such as cov- 
ers, overlaps, etc Pictonal domams also have 
functions defined on them which compute some 
simple or aggregate attnbute A simple function 
for a region obJect IS area which computes Its 
area An aggregate function on a set, of highway 
segments 1s northest which flnds the northest 
coordinates of any pomt m a hlghway 

A pictorial domain m PSQL can be thought 
of as an abstract data type The comparison 
operators and functions defined on a plctonal 
domain hide from the user the low level lmplemen- 
tation details which deal with the alphanumenc 
encodings of the domain ks can be seen from the 
above examples, functions del’lned on pictorial 
domams are very specific to the application and 
that any attempt to include all useful ones in 
PSQL or m any other language would be pointless 
Instead, the language must have capablhties for 
user-defined (apphcatlon-deflned) extensions that 
can be mvoked from the pictorial language 

Relations can be defined over alphanumeric 
and/or plctonal domams Every tuple models rela- 
tlonshlp among those alphanumenc and pictorial 
objects The relation columns that correspond to 
alphanumenc domains are mdexed the usual way 
The columns of plctorlal domains are indexed by 
the R-trees, see section 3, and thus each pictorial 
domam element that corresponds to a tuple of the 
relation appears on a leaf-node of the R-tree 

PSQL implements these sssoclatlons between 
alphanumenc and pictorial domams using a back- 
ward (unique) ldentlfler of type pomter [Powell t 
Lmton 19831, [Zamolo 19831 which pomts to the 
area on the picture (to the leaf-node of the R- 
tree) These identifiers are computed when the 
relations are generated or updated The 
Identifier’s value (pomter-value) 1s used to select, 
the relation’s tuples m the forward direct search, 
i e , when it retrieves using the picture Note that 
a pictonal relation could be associated with more 
than one picture In this case, one identifier 1s 
required for each picture association of this rel& 
tion This mcreases the complexity of the 
updates, but provides higher data sharability 

The implementation of pictonal relations 
and their access 1s slmllar to ordinary relations 
with the only difference being that each pictorial 
relation has an extra column named “10~” of type 
pointer which stores pomters to the picture 

cities(clty,state,population,loc) 
states(state, population-densGy,loc) 
time-zones(zone,hour-dlff,loc) 
lakes(lake,area,volume,loc) 
highways(hwy-name,hwy-section,loc) 

Although the lot column takes values of type 
pointer, the user can use the column name to 
specify spatial relationships that the tuples must, 
satisfy The type of a pictonal ObJect may be of 
type “point,” as in cities, or “lme segment,” as in 
highways, or “region,” as m time-zones and lakes 

2.2. The Retrieve Mappings 

PSQL’s extended mapping 1s of the form 

select <attribute-target-list > 
from Crelatlon-list > 
on <picture-list > 
at <area-specification> 
where < quahficatlon > 

When specified, the on-at-clause selects oue 
area on an picture and uses It in narrowmg down 
the retneval scope of the relations appearmg m 
the from-clause 

The followmg example IS a typical simple 
query in PSQL 

select city,state,populatlon,loc 
from cities 
on us-map 
at lot covered-by {4f4,11f9} 
where population > 450,000 

which selects all cities in the area {4&4,11&g} 
(Eastern US entered by coordinates or by a mouse) 
having population greater than 450,000 Figure 
2 la shows the alphanumeric result of the query 
and 2 lb the pictonal output dlsplayed on a 
graphics monitor Note that the ObJect names are 
dlsplayed on the picture to assist the user to visu- 
ahze their correspondence 

The <picture-list> in the mapping 1s Jusf a 
name hst, and nothing but the standard string 
matching for identity 1s performed However, a 
geographic area on the pictures specified by the 
<are*speclflcation> 1s a location specification 
which can be either a bound variable or a location 
given in absolute constant coordinates or m van- 
able coordmates The location variable may JUSt 
be a name of a location predefined outside the 
retrieve mappmg Furthermore an area in the 
<area-speclflcatlon> may be followed by the spa- 
tial operators covering, covered-by, overlap- 
piw, disjoined, etc , followed by another 
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location speciflcatlon The meaning of “10~1 cov- 
ering (covered-by, overlapping, disjoined) 
10~2” is that loci covers (1s covered by, overlaps 
with, is dlsJomed with, etc ) 10~2 n 

The spatial operators are comparison predi- 
cates whmh receive two area speclficatlons each of 
which 1s either a constant or a pomter variable 
whose bmdmg dunng the processmg pomts to an 
area of the picture The operators return true or 
false depending on whether or not the two argu- 
ment locatlons sat&y the correspondmg spatial 
relation on the pmture The spatial operators are 
very similar to those found m Zamolo [Zamolo 
19831 and Stonebraker [Stonebraker et al 19841 
and can be implemented by extendmg the stan- 
dard retrieve and update capablhties of current 
data mampulatlon languages A large variety of 
Wlored operators can be implemented to further 
enhance PSQL It 1s our belief that the power of 
the language stems directly from the mtegratron of 
SQL with these spatial operators 

A very powerful operation in PSQL IS the 
juxtaposition (synthesis) of dissimilar mforma- 
tlon stored m multiple but yet referrmg to the 
same geographmal area pictures The followmg 
example illustrates this powerful feature by syn- 
thesizing mformatlon found on two pictures, i e , 
mformation about titles associated with us-map 
and time-zones associated with a time-zone-map to 
obtain cities together with their time-zone 

select clty,zone 
from cities,time-zones 
on us-map,time-zone-map 
at cltles lot covered-by time-zones lot 

Figure 2 2a and 2 2b show the two maps and Fig- 
ure 2 2c the Juxtaposition of two The 
alphanumeric data consists of the complete rela- 
tions cltles and time-zones dlsplayed next to each 
other d the geographic area of one spatial ObJect 
(city in this case) IS covered by the geographic 
area of the other (time-zone) Juxtaposition 1s 
performed by simultaneous search on the two (or 
more) spatml organizations which correspond to 
the same area The entries can be juxtaposed d 
their associated locations satisfy the at-clause 
The simultaneous use of several spatial organiza- 
tions 1s analogous to the use of two or more secon- 
dary indexes during the query processing where 
the intersection of the mdmes speeds UP the 
search 

Juxtaposltlon is a very powerful operator for 
plctonal databases It 1s somehow similar to the 
relational Jam operator For the Jom to be mean- 
ingful, the tuples of the two relations must refer to 

the same entuy, (see [Kent 19791 and [Rousso- 
poulos 19841) For the Juxtaposltlon, lt is 
sufficient that the two operand pictures refer to 
the same geographic area which m this case plays 
the role of the entity (“geographic Jam”) 

PSQL mappmgs can have several nested lev- 
els by mappmg from a deeper level to the next 
level The query below illustrates the !ocation 
bmdmg of two nested mappmgs The state loca- 
tion passed from the mtenor level IS used to direct 
the search in the exterior one to produce those 
lakes m the Eastern states whmh are within 
(covered by) the boundary of some state 

select lake,area,lakes lot 
from lakes 
on lake-map 
at lakes lot covered-by 

select state lot 
from states 
on state-map 
at states lot covered-by {4f4,11f9} 

The bmdmg of the top level wmdow 1s dynami- 
cally done during the evaluation of the query 

PSQL queries are preprocessed and 
translated mto ordinary SQL entries The only 
addltional requirement from SQL is the capablhty 
of executmg system deflned procedures from 
wlthm the where-clause This feature 1s used to 
call the spatial operators and functions during the 
execution of the query 

The output of PSQL queries is directed to 
two output devices The graphmal output device 
displays the area of the pmture contammg the 
quahfymg spatial ObJects and the standard termi- 
nal displays the alphanumeric data This 1s very 
useful for indirect spatial search because it allows 
the user to simultaneously vlsuahze the correspon- 
dence between data about spatial ObJeCts and then 
picture 

2.3. Database Updates 

Updates of pictorml relations may Involve 
partial reorgamzatlon of the associated plctonal 
index This requires that an insertion or 
modlflcation of a tuple should include spatial 
information for updating each of the spatial index 
associated with the updated relation The reor- 
gamzation of the spatial index 1s discussed in the 
followmg sectlon 
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3. R-trees: The Foundation for the Direct 
Search of PSQL 

PSQL has its foundations on SQL and a data 
structure known as an R-tree Orlgmally defined 
by Guttman [Guttman 19841, R-trees can be 
loosely described as hugher-dlmenaonal generahza- 
tion of B-trees [Bayer & McCrelght 19721 It 1s 
appropriate that R-trees should be used in the 
orgamzatlon of spatial databases, since the data 
obJects of mterest can be accurately represented m 
a form analogous to their spatial nature Thm sec- 
tlon will investigate several properties of R-trees m 
general, and descnbe ways in which spatial data- 
bases may be organized by means of R-trees 

As defined by Guttman, leaf-nodes of the R- 
tree contam entnes of the form 

(I, tuple-identifier) 
where “tuple-ldentlfler” is a pointer to a data 
obJect (in PSQL, data ObJects are pointers to 
tuples withm relations), and I 1s an n-dlmenslonal 
mnnmal rectangle which bounds its constituent 
data ObJects The possibly non-atomic spatial 
obJects stored at the leaf level are conmdered 
atomm, as far as the search 1s concerned, and, m 
the same R-tree, they are not further decomposed 
into its pictonal pnmitlves, i e mto quadrants, 
hne segments, or pixels 

Non-leaf R-tree nodes contam entries of the 
form 

(I, child-pointer) 
where * child-pomter” is a pointer to successor 
node m the next level of the R-tree, and I 1s a 
mmimal rectangle which bounds all the entnes m 
the descendent node The term “branching fac- 
tor” can be used to specify the number of entnes 
per node, each node of an R-tree with branching 
factor four, for example, points to a maximum of 
four descendents (among non-leaf nodes) or four 
tuples (among the leaves) For lllustratlve pur- 
poses in this sectlon, we shall restrict our attention 
to 2-dImensiona R-trees with a branchmg factor 
of four Such a small branchmg factor of four 
would possibly be undesirable m a practical appli- 
cation However, a factor of four greatly facih- 
tates the presentation of the concepts that follow, 
and extensions to higher branching factors (that 
fill a logical disk block) are readily apparent 

When a spatial orgamzatlon on a relation 1s 
defined, an R-tree 1s constructed the same way a 
B-tree 1s for indexing The only difference 
between the two IS that the spatial relationships 
among the objects represented by the relation 
tuples may not necessanly be part of the values 
stored in the tuple Itself and thus they must be 

provided externally (via another Ale created usmg 
a cursor, mouse, or other graphic input device) 
[This is not necessary for a B-tree because then 
organization 1s completely specked by the values 
found m the tuple ] The externally provided spa- 
teal orgamzation should not be thought of as a 
weakness but, on the contrary, it provides further 
flexlblhty to the spatial database For example, 
one may choose to mclude m the tuple all the 
mformatlon needed to mfer their spatial relation- 
ships As for pomt spatial ObJects, the X,Y coordi- 
nates are adequate, mmimal and may be useful to 
the user However, for more complex ObJects, such 
as regions with no canonical shapes and sizes, the 
encodmg of their complete spatial specification 
may be of no mterest to the user who accesses by 
“pointing” to them or by then name in order to 
retrieve mformatlon 

In a spat& database it IS convement to clas- 
sify data ObJects as “pomts,” “segments,” or 
n regions” Figure 3 1 shows a partial R-tree of the 
spatial relation of cities m the continental United 
States As far as the spatial organization of this 
example database is concerned, the spatial ObJects 
cities are viewed as points Figure 3 2, on the 
other hand, shows how U S states are arranged as 
regions using R-trees Since the leaf nodes of an 
R-tree contam pointers to tuples and not the 
actual tuples themselves, points and regions may 
be freely mtermixed wlthm any R-tree 

Usmg PASCAL-hke syntax, leaf and non-leaf 
nodes of an R-tree with a branchmg factor of four 
can be easily deflned 
type ENTRY = record 

Xl ,X2,Yl ,Y2 Integer, 
POINTER integer, 

end, 
NODE = record 

CLASS (leaf, non-leaf), 
DESC array [l 41 of ENTRY, 
VALID Integer, 

end, 

The value of the CLASS fleld identifies the 
node as leaf or non-leaf The rectangle bounded 
by the lmes x=X1, x=X2, y=Yl, and y=Y2 is 
mmimal and bounds all the data objects in all des- 
cendent nodes (not only immediate successors) 
Pointers to those descendent ObJects are contained 
m POINTER and are interpreted as pomters to 
other R-tree nodes d CLASS IS “non-leaf” and to 
database tuples if CLASS 1s “leaf” Since not all 
DESC pointers may be active for any given node, 
the Integer VALID records the number of valid 
pomters By convention, elements of the DESC 
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array are allocated as a stack with VALID serving 
as the stack top The entne R-tree structure can 
be declared as 

var RTREE array [I MaxNodes] of NODE, 
where RTREE[l] 1s arbltranly chosen as the 
root 

3.1. Direct Spatial Search 

R-trees offer an enormous 
search prunmg, so many types of 
can be processed with unusual 

potential for 
spatial quenes 
elegance and 

efficiency As an example, we present an adapta- 
tion of Guttman’s recursive search algorithm for 
answenng queries of the type “List all points and 
regions withm target window <target-window >” 

Procedure SEARCH(N Integer), 
var K integer, 

begm 
d RTREE[n] CLASS = non-leaf then 

begm {recursively search feasible descendents} 
for k =l to RTREE[n] VALID do 
If INTERSECTS(RTREE[n] DESC[k]) 
then SEARCH(RTREE[n] DESC[k] POINTER) 

end 
else 

begin {node N is a leaf} 
for k =l to RTREE[n] VALID do 
if WITHIN (RTREE[n] DESC[k]) then 
DISPLAY-TUPLE(RTREE[n] DESC(k] POINTER) 

end, 
end, 

Presumably the target window is stored m a 
global data structure, the Boolean function 
INTERSECTS returns TRUE If its argument 
entry mtersects the target window and FALSE 
otherwise Sirmlarly, the function WITHIN 
returns TRUE if the argument entry 1s contamed 
wlthm the target window and FALSE otherwlse 
The statement SEARCH(l) ~111 mvoke SEARCH 
on the root node of the R-tree and cause all data 
ObJectS urlthm the target wmdow to be dlsplayed 

For any set of points {Pl, P2, 
each PI IS a pair (x1, yi), deflne the 

Pn} where 
” mmimal 

bounding rectangle” or MBR, written (Pl, P2, , 
Pn) as the rectangle bounded by the lines 

x = mm {xi} y = mm {yl} 
l<l<n l<i<n -- -- 

x ;<TF~{xI} Y = mm {YI} 
l<l<n -- -- 

A munmal boundmg rectangle for a set of 
regions can be defined analogously It is clear that 

the overall organuation and density of the R-tree 
greatly mfluences the efficiency of the search Fig- 
ure 3 3 shows the mmlmal boundmg rectangles 
associated with the Arst-level entries of the root 
node of an R-tree Answering the query “List all 
titles within region W” may reqmre substantially 
more searching than is tolerable, because region W 
intersects all the root entnes and the search can- 
not yet be pruned If this overlap phenomenon 
occurs with any regularity, the advantages of R- 
tree organization can be greatly dimmlshed or 
even lost 

While considermg the performance of R-tree 
searching, therefore, we mtroduce the mformal 
concepts of “coverage” and “overlap” *Cover- 
age” is defined as the total area of all the MBRs of 
all leaf R-tree nodes, and “overlap” 1s deflned as 
the total area contamed within two or more leaf 
MBR’s Obviously, efficient R-tree searchmg 
demands that both overlap and coverage be 
minimized, although overlap seems to be the more 
cntical of the two issues 

3.2. Theoretical Issues in Organieing R- 
trees 

We now return to Guttman’s ongmal paper 
[Guttman 19841 and exanune the algonthms used 
to construct an R-tree Since Guttman wishes R- 
trees to be dynamic structures (such as B-trees) 
that need no periodic reorganization, he requires 

(1) Every node except the root must be “m- 
filled” That is, each node must contain 
between m and M entnes where M 1s the 
maximum number of entries that ~111 fit mto 
one node, and m<M/2 IS a parameter specs- 
fymg the nummum number of entries per 
node 

(2) New data ObJects to be inserted must be 
added to pre-existing R-tree leaves Inser- 
tion of the very first ObJect IS the only excep- 
tlon 

new 
Guttman’s INSERT algorithm for inserting 
objects is designed to create as little addi- 

tional coverage as possible, but requirement (2) 
can sometimes cause excessive amounts of “dead 
space” that slows down R-tree searching To see 
this, consider the eight initial points m Figure 
3 4a Clearly, the pomts could be grouped as 
shown m Figure 3 4b to yield two tightly-packed 
leaf nodes with as httle coverage as possible 
However, d the points are Inserted using INSERT, 
as m Figure 3 4c, reqmrement (2) will cause three 
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leaf nodes to be created with much useless space 
m the middle This 1s a slmphstlc example, but it 
does demonstrate a sltuatlon that should be 
avoided whenever possible 

One might very reasonably ask, then, 
whether INSERT is appropriate for constructing 
the nntml database Specifically, if we are dealing 
with spatial databases that remain relatively static 
over time (such as large chartographic databases), 
can we not design a pre-processmg algorithm that 
will pack the initial set of data ObJects as tightly 
as possible, mmimlzmg coverage and overlap, and 
thus allow for very efficient searchmg? 

Before attempting to desugn an algorithm 
that will pack data ObJects with zero overlap, lt 
would be helpful to know whether zero overlap 
can always be achieved for any arbitrary set of 
data ObJects We flrst examine the case of POlnt 
ObJects m an R-tree with branching factor four 

For any flmte set of pomts 
S={PlJ% ,Pn}={(xl,yl),(x2,y2), (xwn)} 
deflne the function of F as 

F(S) = 1(x (KY) E S}l 

where the vertical bars denote cardmahty That 
1s, F(S) 1s the total number of dlstmct x- 
coordinates among all the points in S Now define 
the function Fcr(S) as 

Fa(S)=F(S rotated counter clockwise through 

the ongm by the angle o) 

Clearly, F2n(S)=FO(S)=F(S) for all S In 
general, however, Fe(S) will vary as cy ranges from 
0 to 27r We now ask, for any S, whether an cy can 
be found such that Fe(S) = ISI 

LEMMA 3.1: For any flmte set of points S m 
the plane, there exists an angle cr such that 
Fo( S)=lSl 

PROOF: Consider all the angles (Y such that 
Fo(S)#S Each pan of points (xl,yl), (XJYJ), I#J, 
in S uniquely determines the lme 

YJ-Y1 
y-y1= ---- (X-Xl) 

XJ-Xl 
if X~#XJ, and the line x=x1 if X~=XJ If XlfXJ, 
then a tedious calculation shows that there exists 
an angle (Y such that a rotation of S by (Y will 
cause the rotated points (xi,yi), (xJ,~J) to have 
ldentlcal x-coordmates (see Figure 3 5) Since 
Fa(S) 1s now by definition at least one less than ISI, 
F~Y(s)#~s~ Smce S 1s fimte, there are at most ISI/2 
angles (Y such that ~a(S)#lSl (possibly fewer if the 
points m S are arranged with any degree of col- 
hneanty) However, there are an infinite number 

of angles o by which S may be rotated, hence it 
follows that there are an infinite number of angles 
a such that Fa(S) = ISI 

The zero overlap theorem can now be stated 
and proved The proof 1s given only for an R-tree 
with branchmg factor of four, but other cases are 
proved slmllarly 

THEOREM 3.2: Given any finite set of pomts S 
m the plane, there exists @l/41 minimal bounding 
rectangles (MBRs) such that each MBR contains 
not more than four pomts and yet all the MBRs 
are dlslomt 

PROOF: Without loss of generahty we may 
assume that ISI 1s an mteger multiple of four 
Rotate S about the ongm until each pomt has a 
distinct x-coordinate By Lemma 3 1, such a rota- 
tlon IS guaranteed to exist Arrange the points by 
mcreasmg x-coordmates {Pl, P2, , Pn} and set 

h,IBRl=(Pl,P2,P3,P4), 
MBR2=(P5,P6,P7,P8), 

By deflmtlon, MBm 1s bounded on the right by a 
point that is strictly less than any pomt m any 
MBRJ for J>I, also, MBRi 1s bounded on the left 
by a point that is stnctly greater than any point 
m any MBRk for kc1 Hence the mtersection of 
MBRi and MBRJ is zero for all i#~ 

Unfortunately, the zero overlap theorem falls 
when the data ObJects have positive area Once 
again, we prove this for the case of branching fac- 
tor four 

THEOREM 3.3: For any finite set of disJoint 
regions in the plane, there does not always exist a 
set of minimal boundmg rectangles (MBRs) such 
that 

Each region 1s contained wholly withm 
exactly one MBR, and 

Each MBR bounds more than one region, but 
not more than four regions, and 

The mtersectlon of all the MBRs has zero 
area 

PROOF: By counterexample Assume that con- 
dltlons (1) (2), and (3) of Theorem 3 3 hold for all 
sets of disJomt reaons, in particular they then 
must hold for the set of skewed rectangular 
regions shown m Figure 3 6 By condltlon (l), 
region RO must be contamed within one MBR, call 
lt h4BRo By condition (2), MBRO must also 
bound at least one other region but no more than 
three other regions An exhaustive enumeration 
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shows that any other reaons we select for inclu- 
sion m h4BRO will necessanly mclude parts of 
other unwanted regions This contradicts condo- 
tlon (3) and proves Theorem 3 3 

Although it has been shown that zero over- 
lap can be achieved for any set of points, there are 
several legitimate obJectlons that can be rsrsed 
with these results as apphed to the practical con- 
struction of R-trees 

(1) Attammg zero overlap may reqmre rotating 
the onentatlon of the entire database, and 
this may not always be convement or even 
possible 

(2) Theorem 3 2 assumed ideal comhtions on a 
contmuous plane and may not always hold m 
a digitized database 

(3) Zero overlap may be attamed only at the leaf 
level of the R-tree The next level contains 
MBR’s of the leaf MBR’s, and therefore 
represents an orgamzatlon of region data 
obJects Even though these leaf h4BR’s may 
have zero overlap, Theorem 3 3 shows that 
zero overlap for regions (1 e , the next higher 
level of the R-tree) IS sometimes impossible 

(4) Some region data ObJects have mherent over- 
lap, such as counties wlthm states 

(5) Although overlap may be mnnmlzed, the n%ue 
of coverage remams Figure 3 7a shows a set 
of leaf R-tree nodes Although there 1s zero 
overlap, the coverage IS unacceptably high A 
more reasonable grouping 1s shown m Figure 
3 7b The simultaneous mmlmization of both 
coverage and overlap is a complex task 

3.3. The Packing Algorithm 

These problems are addressed by means of 
algorithm PACK, which attempts to minimize 
both coverage and overlap PACK takes as mput 
a set of data ObJects and produces as output a 
near-optimally packed R-tree, but requnes no spe- 
cial rotation or onentation of the database frame 
of reference 

Since we assume that the spatial database 
~11 remam relatively static (maps of geographical 
regions, for example, do not require frequent mser- 
tions or updates), we strengthen Guttman’s 
requrrement that R-tree nodes be at least m-fllled 
by stipulatmg that all nodes are to be packed as 
fully as possible For convenience, we agam 
assume that the node branchmg factor IS four, and 
also that the total data objects at any R-tree level 
IS an integral multiple of four This would be 
highly unlikely m any real apphcatlon, but the 

“multiple of four” assumption allows us to 
dispense with the trivial specml cases of one 
partially-filled node for leftover entrles per level 

Algorithm PACK can be wntten as a recur- 
sive function, its sole argument 1s DLIST, a list of 
data ObJects to be packed NN 1s a nearest nelgh- 
bor function which takes two arguments 
NN(DLIST,I) return the item m the list DLIST 
which 1s spatially closest to item I and has the 
addltional effect of deleting that item from DLIST 
A very high level description of the algorithm fol- 
lows 

Recursive Function PACK (DLIST) tnode, 

{Returns a pointer to the root node 
of a fully-packed R-tree contammg 

all the data Items m DLIST } 

begm 
If DLIST contains four data obJects 
then begm 

Allocate a pointer to a new R-tree node, NO, 
Cause pomters of NOT to point to Items of DLIST, 
RETURN (No), 
end 

else 
begm 

Order ObJects of DLIST by some spatial crit- 
enon, {e g ascending x-coordmate} 

NLIST =(), {m~tial~ze as the empty hst} 
while DLIST is not empty do 
begin 

11 =lhst object from DLIST, 
DLIST =tall(DLIST), {delete 1st ObJect} 
12 =NN(DLIST,Il), 
13 =NN(DLIST,Il), 
14 =NN(DLIST,Il), 
Allocate a new R-tree node, Nl, 
Cause pomters of Nl to point to I1,12, 

13 and 14, 
LIST =append(NLIST,Nl),{add new node} 

end, 
RETURN(PACK(NLIST)), 

end 
end 

A simple example should illustrate the pnn- 
ciple by whmh PACK operates Figure 3 8a shows 
a set of points representing cities on a map of the 
United States In the flrst call of PACK, DLIST 1s 
the entire hst of cities stored as coordinate pans 
(perhaps latitude and longitude) Smce there are 
more than four such pans, the ELSEclause 1s exe- 
cuted, and the cities are grouped by nearest 

24 



neighbor (Figure 3 8b) PACK is then called 
recursively usmg the hst of leaf MBR’s as data 
ObJects (Figure 3 8c), and this process continues, 
working ever backwards, until the root 1s finally 
reached and created As defined here, PACK 
refuses to make any dlstmctlons between leaf and 
non-leaf nodes, although such a dlstmctlon 1s cntl- 
cal and must be made m any practical lmplemen- 
tation It should be noted that it may be prefer- 
able to select the 4 items simultaneously from 
DLIST such that the area of the resulting assocl- 
ated MBR is mmimized, but this could be com- 
bmatonally explosive 

It is beyond the scope of this paper to prove 
any abstract formal properties of PACK, but 
emplncal results have repeatedly demonstrated 
that the algonthm constructs very tightly-packed 
R-trees which readily lend themselves to efficient 
searchmg 

3.4. The Update Problem 

The basic sssumptlon of PACK is that data- 
bases that are created for the first time must be 
efficiently orgamzed Another assumption 1s that 
the database will remam relatively static How- 
ever, the database need not be absolutely static 
the INSERT and DELETE algonthms given by 
Guttman can still be used to insert and delete 
data obJects Indeed, it is mtuitively appealmg to 
suppose that INSERT and DELETE will perform 
well on a PACKed R-tree INSERT, for example, 
mserts a new data ObJect mto the leaf that 
requires the least enlargement, and, If that leaf IS 
already filled, propagates node sphts upward 
toward the root Such sphts, of course,, would be 
mevltable with the first few insertions, smce the 
packed nodes are already filled However, R-trees 
created by PACK are presumed to exist in at least 
a tentatively final state INSERT may thus select 
from a large number of leaves so that the “least 
enlargement” is mmlmized Hence, INSERT (and 
analogously DELETE) and PACK can complement 
each other, and such an combmatlon can be used 
effectively m the creation and mamtenance of 
dynamic R-trees 

3.5. Empirical Results 

We ran some expenments comparmg 
Guttman’s INSERT and PACK The experiments 
were performed in a straghtforward fashion The 
parameter J, specifying the number of data 
ObJects, was allowed to range over selected values 

from 10 to 900 Data ObJects were points havmg 
coordinates (x,y), (05x5 1000, O<y< lOOO), and 
were randomly generated with a uniform dlstnbu- 
tlon m the plane Each algonthm used the same 
set of points for equal values of J to construct an 
R-tree For each algorithm and each value of J, 
we measured and recorded the coverage (C) and 
overlap (0) of the constructed R-tree, the total 
nodes withm the R-tree (N), the depth (D) of the 
R-tree, and the average number (A) of nodes 
visited during 1000 random search queries The 
search queries were of the simple form 

“Is point (xl,yl) contained in the database?” 

and again were identical for both algorithms for 
equal values of J The results of these experiments 
are shown in Table 1 

As the results show, packmg the data ObJects 
can result m sigmflcant savings in space and 
search time 

4. Conclusions 

This paper presented a packing techmque for 
R-trees which significantly improves direct spatial 
search on pictonal databases This is achieved by 
mmlmlzmg coverage and overlap of the leaf-nodes 
of the R-trees 

The formal the theoretlcal properties of the 
PACK and the search algonthms will be reported 
m a forthcommg report The search of the spatial 
operators and functions employed by PSQL are 
currently being implemented We are currently 
mvestlgatmg the posslbllity of dynamic mvocation 
of the PACK algorithm durmg insertions and dele- 
tlons to efficiently perform a “local” reorganiza- 
tlon This will achieve the search performance 
obtained by the PACK algorithm for dynamically 
reorganized R-trees 
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10 
25 
50 
75 

100 
125 
150 
175 
200 
250 
300 
400 
500 
600 
700 
800 
900 

Code 

GUTTMAN'S INSERT PACK ALGORITHM 

68483 43731 1 4 2 217 39590 0 1 3 1424 
74577 124311 2 12 4800 31230 144 2 9 2 249 
70718 177809 3 28 7775 37421 1295 2 16 2 282 
74561 229949 3 39 9 379 36152 1329 3 26 3 431 
75234 235079 4 60 12 955 38271 994 3 35 3 645 
77578 246084 4 73 14024 36476 1318 3 42 3658 
77342 255692 4 86 14894 40145 2729 3 51 3 784 
79869 255523 4 103 16 277 36432 2532 3 58 3 820 
80034 295091 4 117 17870 33959 1394 3 68 3 873 
79117 293730 4 142 18 585 40069 1946 3 83 3 897 
78891 376731 4 167 20838 38438 1527 4 102 5 397 
82116 553650 5 233 28 935 37558 965 4 135 5 418 
85290 698248 5 302 36132 39820 1688 4 168 5 466 
85253 749874 5 368 40799 39542 2106 4 202 5 276 
86225 852205 5 438 45924 37016 1252 4 234 5 604 
87418 1002339 6 507 55462 38614 1522 4 268 5 730 
87640 1164809 6 573 63595 38808 1512 4 302 6 071 

J = Number of Spatial Data Objects 
C = Coverage of R-tree 
0 = Overlap of R-tree 
D = Depth of R-tree 
N = Total number of nodes in R-tree 
A = Average number of nodes vlslted 

Table 1 Expenmental results over 100 random search queries 
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I--------------------------------------, 

Ichar :char Ireal I 
I--------------------------------------, 
Icity I state Ipopulation I 
,-----------------------------------I 
Ict 1st IPOP 
I-------------------------------------I 
lJACKSONVILLEIFLtlRID~ I 540.920 I 
INEW DRLERNS ILOUISIANA I s57;m I 
I51 LDUIS IHISDURI I 453.085 I 
lHEflPHIS I TENNESSEE 64&356 I 
INASHVILLE I TENNESSEE 4S5.651 I 
,--------------------------------------I 
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FIGURE 3.8A 
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