
Direct Spatial Search on Pictorial Databases
Using Packed R-trees

Nick Roussopoulos
and

Daniel Leifker

Department of Computer Science
Umverslty of Maryland

College Park, Maryland 20742

Abstract

Pictorial databases require efficient and duect spatml search based on the analog form of spatial
obJects and relatlonshlps instead of search based on some cumbersome alphanumeric encodings of the pm-
tures R-trees (two-dimensional B-trees) are excellent devices for indexing spatial ObJects and relation-
ships found on pictures Their most important feature 1s that they provide high level ObJect onented
search rather than search based on the low level elements of spatial ObJects This paper presents an
efficient initial packing technique for creatmg R-trees to index spatial ObJects Since pictorial databases
are not update mtensive but rather static, the beneflts of this technique are very significant

1. Introduction

Pictorial databases have been introduced for
more than a decade now Chang [Chang 19811 pro-
vldes a survey of most of the attempts in this
area The techmques used in the design, imple-
mentation and access languages of pictorial data-
bases were influenced by the corresponding tech-
niques in alphanumeric databases, but, many of
the researchers discovered that these techniques
had to be extended in several respects [Chang &
Fu 19811, [Chang & Kumi 19811, [Lm & Chang
19801, [Tang 19801 Some other researchers felt
that the capabilities of these approaches are not
adequate because they are merely providing simple
table look-ups of spatial facts and vector-based
displays of digitized map data [McKeown 1983a,b]
McKeown feels that more advanced query process-
ing capabilities are necessary, including pre-
computation and utdization of spatial relatron-
ships, dynamic computation of spatial relation-
ships from the pictures, and other speciahzed
features which can be class&led as expert routines
for special purpose picture manipulation tasks

Permtsslon to copy wtthout fee all or part of this matenal IS granted
provtded that the coptes are not made or dtstrtbuted for dtrect
commerctal advantage, the ACM copyright notlce and the tttle of the
pubhcatton and its date appear, and nottce IS gtven that copymg IS by
pcrmlsslon of the Assoclatton for Computmg Machmery To copy
otherwtse, or to repubhsh, requires a fee and/or specdk permlsston

@ 1985 ACM 0-89791-160-l/85/005/0017 $0075

We believe that pictorial and alphanumeric
databases must be integrated but the representa-
tion and processing of the two must be clearly dls-
tmgmshed First, pictures are not naturally
representable in alphanumeric encodings and they
should, therefore, be presented to the user in them
analog form Furthermore, user queries searching
for pictorial ObJects and spatial relationships
among them must be direct, specified m terms of
the analog form This allows the user to do
direct manipulations on the plctonal database
Alphanumeric data associated with pictures can be
displayed on or beside the picture Second,
although the manipulation language must combine
powerful features for handling pictures and
alphanumeric data, it should not embed pictorial
access features and spatial operators into an
alphanumeric data manipulation language
Instead of forcing the pictorial syntax speclflcation
to At a preexistmg alphanumeric language, the
user interface should naturally coordmate the
query specification that addresses the pictorial
part with the one that addresses the alphanumeric
part But each part must have whatever syntax is
natural for handling it, which implies that the plc-
torial syntax must be developed from the begm-
rung with no compromises to At existing
alphanumeric query language Third, the process-
ing of pictures which requires special purpose pro-
cessors and talored mdexmg techniques must be
left outside the database system processor so that
these special purpose processors can be replaced,

17

modified, or improved, accordmg to the requlre-
ments and the sophlstmation of the software and
hardware

The above three premises suggest a system
architecture that can support from a very sophistl-
cated, large and high resolution pictorial database
to a very simple one using mexpenslve graphics
hardware found in today’s micro-computers The
alphanumeric data processor and the pmtorial pro-
cessor are different but they need to exchange con-
trol and data Figure 1 1 shows this architecture

From the user’s point of view, the following
1s a list of requirements that an integrated data-
base must satisfy

1 During the access of the database the user
should be able to obtain displays whmh show
the correspondence between the spatial
obJects on the picture and the data assoc~-
ated with it The picture contains these
obJects and the spatial relations among
them Therefore, it would be very natural to
selectively display the spatial objects satlsfy-
mg the user’s query along with other data
associated with them

2 The database must support direct spatial
search whmh locates the spatial obJects in a
given geographic area of the picture This
accommodates quenes of the form “Find all
the bndges m a given area,” where the area
1s specified on the picture by a graphms
direct data entry devme

3 The database must support indirect spatial
search which locates ObJects based on some
non-spatial attnbutes and use the assocla-
tlons between the spatlal ObJects on the pic-
ture to place them on It This accommo-
dates quenes of the form “Display the city
and its elevation If the population exceeds 2
million,” where elevation 1s extracted from
an elevation map

4 The database must support a more advanced
user interface which allows for a duect
graphms input speclflcatlon (pointing devices
such as a mouse, joystmk, etc) and output
display coordination between the pictorial
and the alphanumenc data

Direct spatial search requires more advanced
indexing techmques [Stonebraker et al 19831
because of the non-atomicity of spatial obJects
For two-dimensional spatial ObJects, R-trees [Gutt-
man 19841 are excellent speed-up devices They
can be thought of as twodimensional B-trees [Bay

& McCrelght 19721, and, although they are similar
m nature to Quad-trees [Fmkel & Bentley 19841,
they are more flexible and then dynamic nature
can better deal with “dead-space” on the pictures
The most Important feature that distinguishes R-
trees from Quad-trees 1s the fact that, at the leaf
level, the former store full and non-atomic spatial
obJects whereas the latter may mdlscrlmmately
decompose the ObJects into lower level pictorial
pnmltlves such as quadrants, line segments, or,
even pixels This feature provides a natural and
high level object oriented search Similar
search in Quad-trees requnes an elaborate recon-
struction process of the spatial obJects from the
low level pnmltlves of the leaves Furthermore,
because the storage orgamzatlon of R-trees 1s
based on B-trees, they are better in dealmg with
paging and disk I/O buffermg [Guttman 19841

In this paper we present a compaction tech-
nique for “packing” and reducing dead-space on
R-trees We show that by carefully creating the
index on the spatial ObJects, we obtain sigmilcant
performance improvement durmg the search The
initial construction of the index 1s not m a confhct
with the dynamic nature of the R-trees whmh can
then be updated m the usual way However, smce
most of the plctonal databases are relatively
statm, the benefits of this initial packing are very
slgmficant

The packed R-trees have been Implemented
m the context of PSQL [Roussopoulos & Leifker
19841, a query language for pictorial databases
whmh supports dnect and indirect spatial search
A bnef mtroduction of PSQL is given m Section 2
Section 3 deals with the compaction of R-trees and
then use for direct spatial search Sectlon 4 con-
tams the conclusions

2. PSQL - A Query Language for Pictorial
Databases

PSQL is a relational based language for
retnevmg information from a pictonal database
It extends the power of SQL [Chamberlm et al
19761 for retneving alphanumenc data by allowing
direct spatial search The plctorlal database mam-
tains the associations between the spatial and
alphanumeric objects This is necessary to sup-
port direct spatial and mdirect alphanumeric
search

2.1. Data Definition in PSQL

PSQL supports pictorial domains whose ele-
ments are ObJects found on pictures Examples of
these obJects include geographic points on a map,

18

highway segments, geographic regions, etc Each
domain has Its own plctonal representation and
form Pictonal domains have their own com-
panson operators for comparmg their elements
For example, regions have operators, such as cov-
ers, overlaps, etc Pictonal domams also have
functions defined on them which compute some
simple or aggregate attnbute A simple function
for a region obJect IS area which computes Its
area An aggregate function on a set, of highway
segments 1s northest which flnds the northest
coordinates of any pomt m a hlghway

A pictorial domain m PSQL can be thought
of as an abstract data type The comparison
operators and functions defined on a plctonal
domain hide from the user the low level lmplemen-
tation details which deal with the alphanumenc
encodings of the domain ks can be seen from the
above examples, functions del’lned on pictorial
domams are very specific to the application and
that any attempt to include all useful ones in
PSQL or m any other language would be pointless
Instead, the language must have capablhties for
user-defined (apphcatlon-deflned) extensions that
can be mvoked from the pictorial language

Relations can be defined over alphanumeric
and/or plctonal domams Every tuple models rela-
tlonshlp among those alphanumenc and pictorial
objects The relation columns that correspond to
alphanumenc domains are mdexed the usual way
The columns of plctorlal domains are indexed by
the R-trees, see section 3, and thus each pictorial
domam element that corresponds to a tuple of the
relation appears on a leaf-node of the R-tree

PSQL implements these sssoclatlons between
alphanumenc and pictorial domams using a back-
ward (unique) ldentlfler of type pomter [Powell t
Lmton 19831, [Zamolo 19831 which pomts to the
area on the picture (to the leaf-node of the R-
tree) These identifiers are computed when the
relations are generated or updated The
Identifier’s value (pomter-value) 1s used to select,
the relation’s tuples m the forward direct search,
i e , when it retrieves using the picture Note that
a pictonal relation could be associated with more
than one picture In this case, one identifier 1s
required for each picture association of this rel&
tion This mcreases the complexity of the
updates, but provides higher data sharability

The implementation of pictonal relations
and their access 1s slmllar to ordinary relations
with the only difference being that each pictorial
relation has an extra column named “10~” of type
pointer which stores pomters to the picture

cities(clty,state,population,loc)
states(state, population-densGy,loc)
time-zones(zone,hour-dlff,loc)
lakes(lake,area,volume,loc)
highways(hwy-name,hwy-section,loc)

Although the lot column takes values of type
pointer, the user can use the column name to
specify spatial relationships that the tuples must,
satisfy The type of a pictonal ObJect may be of
type “point,” as in cities, or “lme segment,” as in
highways, or “region,” as m time-zones and lakes

2.2. The Retrieve Mappings

PSQL’s extended mapping 1s of the form

select <attribute-target-list >
from Crelatlon-list >
on <picture-list >
at <area-specification>
where < quahficatlon >

When specified, the on-at-clause selects oue
area on an picture and uses It in narrowmg down
the retneval scope of the relations appearmg m
the from-clause

The followmg example IS a typical simple
query in PSQL

select city,state,populatlon,loc
from cities
on us-map
at lot covered-by {4f4,11f9}
where population > 450,000

which selects all cities in the area {4&4,11&g}
(Eastern US entered by coordinates or by a mouse)
having population greater than 450,000 Figure
2 la shows the alphanumeric result of the query
and 2 lb the pictonal output dlsplayed on a
graphics monitor Note that the ObJect names are
dlsplayed on the picture to assist the user to visu-
ahze their correspondence

The <picture-list> in the mapping 1s Jusf a
name hst, and nothing but the standard string
matching for identity 1s performed However, a
geographic area on the pictures specified by the
<are*speclflcation> 1s a location specification
which can be either a bound variable or a location
given in absolute constant coordinates or m van-
able coordmates The location variable may JUSt
be a name of a location predefined outside the
retrieve mappmg Furthermore an area in the
<area-speclflcatlon> may be followed by the spa-
tial operators covering, covered-by, overlap-
piw, disjoined, etc , followed by another

19

location speciflcatlon The meaning of “10~1 cov-
ering (covered-by, overlapping, disjoined)
10~2” is that loci covers (1s covered by, overlaps
with, is dlsJomed with, etc) 10~2 n

The spatial operators are comparison predi-
cates whmh receive two area speclficatlons each of
which 1s either a constant or a pomter variable
whose bmdmg dunng the processmg pomts to an
area of the picture The operators return true or
false depending on whether or not the two argu-
ment locatlons sat&y the correspondmg spatial
relation on the pmture The spatial operators are
very similar to those found m Zamolo [Zamolo
19831 and Stonebraker [Stonebraker et al 19841
and can be implemented by extendmg the stan-
dard retrieve and update capablhties of current
data mampulatlon languages A large variety of
Wlored operators can be implemented to further
enhance PSQL It 1s our belief that the power of
the language stems directly from the mtegratron of
SQL with these spatial operators

A very powerful operation in PSQL IS the
juxtaposition (synthesis) of dissimilar mforma-
tlon stored m multiple but yet referrmg to the
same geographmal area pictures The followmg
example illustrates this powerful feature by syn-
thesizing mformatlon found on two pictures, i e ,
mformation about titles associated with us-map
and time-zones associated with a time-zone-map to
obtain cities together with their time-zone

select clty,zone
from cities,time-zones
on us-map,time-zone-map
at cltles lot covered-by time-zones lot

Figure 2 2a and 2 2b show the two maps and Fig-
ure 2 2c the Juxtaposition of two The
alphanumeric data consists of the complete rela-
tions cltles and time-zones dlsplayed next to each
other d the geographic area of one spatial ObJect
(city in this case) IS covered by the geographic
area of the other (time-zone) Juxtaposition 1s
performed by simultaneous search on the two (or
more) spatml organizations which correspond to
the same area The entries can be juxtaposed d
their associated locations satisfy the at-clause
The simultaneous use of several spatial organiza-
tions 1s analogous to the use of two or more secon-
dary indexes during the query processing where
the intersection of the mdmes speeds UP the
search

Juxtaposltlon is a very powerful operator for
plctonal databases It 1s somehow similar to the
relational Jam operator For the Jom to be mean-
ingful, the tuples of the two relations must refer to

the same entuy, (see [Kent 19791 and [Rousso-
poulos 19841) For the Juxtaposltlon, lt is
sufficient that the two operand pictures refer to
the same geographic area which m this case plays
the role of the entity (“geographic Jam”)

PSQL mappmgs can have several nested lev-
els by mappmg from a deeper level to the next
level The query below illustrates the !ocation
bmdmg of two nested mappmgs The state loca-
tion passed from the mtenor level IS used to direct
the search in the exterior one to produce those
lakes m the Eastern states whmh are within
(covered by) the boundary of some state

select lake,area,lakes lot
from lakes
on lake-map
at lakes lot covered-by

select state lot
from states
on state-map
at states lot covered-by {4f4,11f9}

The bmdmg of the top level wmdow 1s dynami-
cally done during the evaluation of the query

PSQL queries are preprocessed and
translated mto ordinary SQL entries The only
addltional requirement from SQL is the capablhty
of executmg system deflned procedures from
wlthm the where-clause This feature 1s used to
call the spatial operators and functions during the
execution of the query

The output of PSQL queries is directed to
two output devices The graphmal output device
displays the area of the pmture contammg the
quahfymg spatial ObJects and the standard termi-
nal displays the alphanumeric data This 1s very
useful for indirect spatial search because it allows
the user to simultaneously vlsuahze the correspon-
dence between data about spatial ObJeCts and then
picture

2.3. Database Updates

Updates of pictorml relations may Involve
partial reorgamzatlon of the associated plctonal
index This requires that an insertion or
modlflcation of a tuple should include spatial
information for updating each of the spatial index
associated with the updated relation The reor-
gamzation of the spatial index 1s discussed in the
followmg sectlon

20

3. R-trees: The Foundation for the Direct
Search of PSQL

PSQL has its foundations on SQL and a data
structure known as an R-tree Orlgmally defined
by Guttman [Guttman 19841, R-trees can be
loosely described as hugher-dlmenaonal generahza-
tion of B-trees [Bayer & McCrelght 19721 It 1s
appropriate that R-trees should be used in the
orgamzatlon of spatial databases, since the data
obJects of mterest can be accurately represented m
a form analogous to their spatial nature Thm sec-
tlon will investigate several properties of R-trees m
general, and descnbe ways in which spatial data-
bases may be organized by means of R-trees

As defined by Guttman, leaf-nodes of the R-
tree contam entnes of the form

(I, tuple-identifier)
where “tuple-ldentlfler” is a pointer to a data
obJect (in PSQL, data ObJects are pointers to
tuples withm relations), and I 1s an n-dlmenslonal
mnnmal rectangle which bounds its constituent
data ObJects The possibly non-atomic spatial
obJects stored at the leaf level are conmdered
atomm, as far as the search 1s concerned, and, m
the same R-tree, they are not further decomposed
into its pictonal pnmitlves, i e mto quadrants,
hne segments, or pixels

Non-leaf R-tree nodes contam entries of the
form

(I, child-pointer)
where * child-pomter” is a pointer to successor
node m the next level of the R-tree, and I 1s a
mmimal rectangle which bounds all the entnes m
the descendent node The term “branching fac-
tor” can be used to specify the number of entnes
per node, each node of an R-tree with branching
factor four, for example, points to a maximum of
four descendents (among non-leaf nodes) or four
tuples (among the leaves) For lllustratlve pur-
poses in this sectlon, we shall restrict our attention
to 2-dImensiona R-trees with a branchmg factor
of four Such a small branchmg factor of four
would possibly be undesirable m a practical appli-
cation However, a factor of four greatly facih-
tates the presentation of the concepts that follow,
and extensions to higher branching factors (that
fill a logical disk block) are readily apparent

When a spatial orgamzatlon on a relation 1s
defined, an R-tree 1s constructed the same way a
B-tree 1s for indexing The only difference
between the two IS that the spatial relationships
among the objects represented by the relation
tuples may not necessanly be part of the values
stored in the tuple Itself and thus they must be

provided externally (via another Ale created usmg
a cursor, mouse, or other graphic input device)
[This is not necessary for a B-tree because then
organization 1s completely specked by the values
found m the tuple] The externally provided spa-
teal orgamzation should not be thought of as a
weakness but, on the contrary, it provides further
flexlblhty to the spatial database For example,
one may choose to mclude m the tuple all the
mformatlon needed to mfer their spatial relation-
ships As for pomt spatial ObJects, the X,Y coordi-
nates are adequate, mmimal and may be useful to
the user However, for more complex ObJects, such
as regions with no canonical shapes and sizes, the
encodmg of their complete spatial specification
may be of no mterest to the user who accesses by
“pointing” to them or by then name in order to
retrieve mformatlon

In a spat& database it IS convement to clas-
sify data ObJects as “pomts,” “segments,” or
n regions” Figure 3 1 shows a partial R-tree of the
spatial relation of cities m the continental United
States As far as the spatial organization of this
example database is concerned, the spatial ObJects
cities are viewed as points Figure 3 2, on the
other hand, shows how U S states are arranged as
regions using R-trees Since the leaf nodes of an
R-tree contam pointers to tuples and not the
actual tuples themselves, points and regions may
be freely mtermixed wlthm any R-tree

Usmg PASCAL-hke syntax, leaf and non-leaf
nodes of an R-tree with a branchmg factor of four
can be easily deflned
type ENTRY = record

Xl ,X2,Yl ,Y2 Integer,
POINTER integer,

end,
NODE = record

CLASS (leaf, non-leaf),
DESC array [l 41 of ENTRY,
VALID Integer,

end,

The value of the CLASS fleld identifies the
node as leaf or non-leaf The rectangle bounded
by the lmes x=X1, x=X2, y=Yl, and y=Y2 is
mmimal and bounds all the data objects in all des-
cendent nodes (not only immediate successors)
Pointers to those descendent ObJects are contained
m POINTER and are interpreted as pomters to
other R-tree nodes d CLASS IS “non-leaf” and to
database tuples if CLASS 1s “leaf” Since not all
DESC pointers may be active for any given node,
the Integer VALID records the number of valid
pomters By convention, elements of the DESC

21

array are allocated as a stack with VALID serving
as the stack top The entne R-tree structure can
be declared as

var RTREE array [I MaxNodes] of NODE,
where RTREE[l] 1s arbltranly chosen as the
root

3.1. Direct Spatial Search

R-trees offer an enormous
search prunmg, so many types of
can be processed with unusual

potential for
spatial quenes
elegance and

efficiency As an example, we present an adapta-
tion of Guttman’s recursive search algorithm for
answenng queries of the type “List all points and
regions withm target window <target-window >”

Procedure SEARCH(N Integer),
var K integer,

begm
d RTREE[n] CLASS = non-leaf then

begm {recursively search feasible descendents}
for k =l to RTREE[n] VALID do
If INTERSECTS(RTREE[n] DESC[k])
then SEARCH(RTREE[n] DESC[k] POINTER)

end
else

begin {node N is a leaf}
for k =l to RTREE[n] VALID do
if WITHIN (RTREE[n] DESC[k]) then
DISPLAY-TUPLE(RTREE[n] DESC(k] POINTER)

end,
end,

Presumably the target window is stored m a
global data structure, the Boolean function
INTERSECTS returns TRUE If its argument
entry mtersects the target window and FALSE
otherwise Sirmlarly, the function WITHIN
returns TRUE if the argument entry 1s contamed
wlthm the target window and FALSE otherwlse
The statement SEARCH(l) ~111 mvoke SEARCH
on the root node of the R-tree and cause all data
ObJectS urlthm the target wmdow to be dlsplayed

For any set of points {Pl, P2,
each PI IS a pair (x1, yi), deflne the

Pn} where
” mmimal

bounding rectangle” or MBR, written (Pl, P2, ,
Pn) as the rectangle bounded by the lines

x = mm {xi} y = mm {yl}
l<l<n l<i<n -- --

x ;<TF~{xI} Y = mm {YI}
l<l<n -- --

A munmal boundmg rectangle for a set of
regions can be defined analogously It is clear that

the overall organuation and density of the R-tree
greatly mfluences the efficiency of the search Fig-
ure 3 3 shows the mmlmal boundmg rectangles
associated with the Arst-level entries of the root
node of an R-tree Answering the query “List all
titles within region W” may reqmre substantially
more searching than is tolerable, because region W
intersects all the root entnes and the search can-
not yet be pruned If this overlap phenomenon
occurs with any regularity, the advantages of R-
tree organization can be greatly dimmlshed or
even lost

While considermg the performance of R-tree
searching, therefore, we mtroduce the mformal
concepts of “coverage” and “overlap” *Cover-
age” is defined as the total area of all the MBRs of
all leaf R-tree nodes, and “overlap” 1s deflned as
the total area contamed within two or more leaf
MBR’s Obviously, efficient R-tree searchmg
demands that both overlap and coverage be
minimized, although overlap seems to be the more
cntical of the two issues

3.2. Theoretical Issues in Organieing R-
trees

We now return to Guttman’s ongmal paper
[Guttman 19841 and exanune the algonthms used
to construct an R-tree Since Guttman wishes R-
trees to be dynamic structures (such as B-trees)
that need no periodic reorganization, he requires

(1) Every node except the root must be “m-
filled” That is, each node must contain
between m and M entnes where M 1s the
maximum number of entries that ~111 fit mto
one node, and m<M/2 IS a parameter specs-
fymg the nummum number of entries per
node

(2) New data ObJects to be inserted must be
added to pre-existing R-tree leaves Inser-
tion of the very first ObJect IS the only excep-
tlon

new
Guttman’s INSERT algorithm for inserting
objects is designed to create as little addi-

tional coverage as possible, but requirement (2)
can sometimes cause excessive amounts of “dead
space” that slows down R-tree searching To see
this, consider the eight initial points m Figure
3 4a Clearly, the pomts could be grouped as
shown m Figure 3 4b to yield two tightly-packed
leaf nodes with as httle coverage as possible
However, d the points are Inserted using INSERT,
as m Figure 3 4c, reqmrement (2) will cause three

22

leaf nodes to be created with much useless space
m the middle This 1s a slmphstlc example, but it
does demonstrate a sltuatlon that should be
avoided whenever possible

One might very reasonably ask, then,
whether INSERT is appropriate for constructing
the nntml database Specifically, if we are dealing
with spatial databases that remain relatively static
over time (such as large chartographic databases),
can we not design a pre-processmg algorithm that
will pack the initial set of data ObJects as tightly
as possible, mmimlzmg coverage and overlap, and
thus allow for very efficient searchmg?

Before attempting to desugn an algorithm
that will pack data ObJects with zero overlap, lt
would be helpful to know whether zero overlap
can always be achieved for any arbitrary set of
data ObJects We flrst examine the case of POlnt
ObJects m an R-tree with branching factor four

For any flmte set of pomts
S={PlJ% ,Pn}={(xl,yl),(x2,y2), (xwn)}
deflne the function of F as

F(S) = 1(x (KY) E S}l

where the vertical bars denote cardmahty That
1s, F(S) 1s the total number of dlstmct x-
coordinates among all the points in S Now define
the function Fcr(S) as

Fa(S)=F(S rotated counter clockwise through

the ongm by the angle o)

Clearly, F2n(S)=FO(S)=F(S) for all S In
general, however, Fe(S) will vary as cy ranges from
0 to 27r We now ask, for any S, whether an cy can
be found such that Fe(S) = ISI

LEMMA 3.1: For any flmte set of points S m
the plane, there exists an angle cr such that
Fo(S)=lSl

PROOF: Consider all the angles (Y such that
Fo(S)#S Each pan of points (xl,yl), (XJYJ), I#J,
in S uniquely determines the lme

YJ-Y1
y-y1= ---- (X-Xl)

XJ-Xl
if X~#XJ, and the line x=x1 if X~=XJ If XlfXJ,
then a tedious calculation shows that there exists
an angle (Y such that a rotation of S by (Y will
cause the rotated points (xi,yi), (xJ,~J) to have
ldentlcal x-coordmates (see Figure 3 5) Since
Fa(S) 1s now by definition at least one less than ISI,
F~Y(s)#~s~ Smce S 1s fimte, there are at most ISI/2
angles (Y such that ~a(S)#lSl (possibly fewer if the
points m S are arranged with any degree of col-
hneanty) However, there are an infinite number

of angles o by which S may be rotated, hence it
follows that there are an infinite number of angles
a such that Fa(S) = ISI

The zero overlap theorem can now be stated
and proved The proof 1s given only for an R-tree
with branchmg factor of four, but other cases are
proved slmllarly

THEOREM 3.2: Given any finite set of pomts S
m the plane, there exists @l/41 minimal bounding
rectangles (MBRs) such that each MBR contains
not more than four pomts and yet all the MBRs
are dlslomt

PROOF: Without loss of generahty we may
assume that ISI 1s an mteger multiple of four
Rotate S about the ongm until each pomt has a
distinct x-coordinate By Lemma 3 1, such a rota-
tlon IS guaranteed to exist Arrange the points by
mcreasmg x-coordmates {Pl, P2, , Pn} and set

h,IBRl=(Pl,P2,P3,P4),
MBR2=(P5,P6,P7,P8),

By deflmtlon, MBm 1s bounded on the right by a
point that is strictly less than any pomt m any
MBRJ for J>I, also, MBRi 1s bounded on the left
by a point that is stnctly greater than any point
m any MBRk for kc1 Hence the mtersection of
MBRi and MBRJ is zero for all i#~

Unfortunately, the zero overlap theorem falls
when the data ObJects have positive area Once
again, we prove this for the case of branching fac-
tor four

THEOREM 3.3: For any finite set of disJoint
regions in the plane, there does not always exist a
set of minimal boundmg rectangles (MBRs) such
that

Each region 1s contained wholly withm
exactly one MBR, and

Each MBR bounds more than one region, but
not more than four regions, and

The mtersectlon of all the MBRs has zero
area

PROOF: By counterexample Assume that con-
dltlons (1) (2), and (3) of Theorem 3 3 hold for all
sets of disJomt reaons, in particular they then
must hold for the set of skewed rectangular
regions shown m Figure 3 6 By condltlon (l),
region RO must be contamed within one MBR, call
lt h4BRo By condition (2), MBRO must also
bound at least one other region but no more than
three other regions An exhaustive enumeration

23

shows that any other reaons we select for inclu-
sion m h4BRO will necessanly mclude parts of
other unwanted regions This contradicts condo-
tlon (3) and proves Theorem 3 3

Although it has been shown that zero over-
lap can be achieved for any set of points, there are
several legitimate obJectlons that can be rsrsed
with these results as apphed to the practical con-
struction of R-trees

(1) Attammg zero overlap may reqmre rotating
the onentatlon of the entire database, and
this may not always be convement or even
possible

(2) Theorem 3 2 assumed ideal comhtions on a
contmuous plane and may not always hold m
a digitized database

(3) Zero overlap may be attamed only at the leaf
level of the R-tree The next level contains
MBR’s of the leaf MBR’s, and therefore
represents an orgamzatlon of region data
obJects Even though these leaf h4BR’s may
have zero overlap, Theorem 3 3 shows that
zero overlap for regions (1 e , the next higher
level of the R-tree) IS sometimes impossible

(4) Some region data ObJects have mherent over-
lap, such as counties wlthm states

(5) Although overlap may be mnnmlzed, the n%ue
of coverage remams Figure 3 7a shows a set
of leaf R-tree nodes Although there 1s zero
overlap, the coverage IS unacceptably high A
more reasonable grouping 1s shown m Figure
3 7b The simultaneous mmlmization of both
coverage and overlap is a complex task

3.3. The Packing Algorithm

These problems are addressed by means of
algorithm PACK, which attempts to minimize
both coverage and overlap PACK takes as mput
a set of data ObJects and produces as output a
near-optimally packed R-tree, but requnes no spe-
cial rotation or onentation of the database frame
of reference

Since we assume that the spatial database
~11 remam relatively static (maps of geographical
regions, for example, do not require frequent mser-
tions or updates), we strengthen Guttman’s
requrrement that R-tree nodes be at least m-fllled
by stipulatmg that all nodes are to be packed as
fully as possible For convenience, we agam
assume that the node branchmg factor IS four, and
also that the total data objects at any R-tree level
IS an integral multiple of four This would be
highly unlikely m any real apphcatlon, but the

“multiple of four” assumption allows us to
dispense with the trivial specml cases of one
partially-filled node for leftover entrles per level

Algorithm PACK can be wntten as a recur-
sive function, its sole argument 1s DLIST, a list of
data ObJects to be packed NN 1s a nearest nelgh-
bor function which takes two arguments
NN(DLIST,I) return the item m the list DLIST
which 1s spatially closest to item I and has the
addltional effect of deleting that item from DLIST
A very high level description of the algorithm fol-
lows

Recursive Function PACK (DLIST) tnode,

{Returns a pointer to the root node
of a fully-packed R-tree contammg

all the data Items m DLIST }

begm
If DLIST contains four data obJects
then begm

Allocate a pointer to a new R-tree node, NO,
Cause pomters of NOT to point to Items of DLIST,
RETURN (No),
end

else
begm

Order ObJects of DLIST by some spatial crit-
enon, {e g ascending x-coordmate}

NLIST =(), {m~tial~ze as the empty hst}
while DLIST is not empty do
begin

11 =lhst object from DLIST,
DLIST =tall(DLIST), {delete 1st ObJect}
12 =NN(DLIST,Il),
13 =NN(DLIST,Il),
14 =NN(DLIST,Il),
Allocate a new R-tree node, Nl,
Cause pomters of Nl to point to I1,12,

13 and 14,
LIST =append(NLIST,Nl),{add new node}

end,
RETURN(PACK(NLIST)),

end
end

A simple example should illustrate the pnn-
ciple by whmh PACK operates Figure 3 8a shows
a set of points representing cities on a map of the
United States In the flrst call of PACK, DLIST 1s
the entire hst of cities stored as coordinate pans
(perhaps latitude and longitude) Smce there are
more than four such pans, the ELSEclause 1s exe-
cuted, and the cities are grouped by nearest

24

neighbor (Figure 3 8b) PACK is then called
recursively usmg the hst of leaf MBR’s as data
ObJects (Figure 3 8c), and this process continues,
working ever backwards, until the root 1s finally
reached and created As defined here, PACK
refuses to make any dlstmctlons between leaf and
non-leaf nodes, although such a dlstmctlon 1s cntl-
cal and must be made m any practical lmplemen-
tation It should be noted that it may be prefer-
able to select the 4 items simultaneously from
DLIST such that the area of the resulting assocl-
ated MBR is mmimized, but this could be com-
bmatonally explosive

It is beyond the scope of this paper to prove
any abstract formal properties of PACK, but
emplncal results have repeatedly demonstrated
that the algonthm constructs very tightly-packed
R-trees which readily lend themselves to efficient
searchmg

3.4. The Update Problem

The basic sssumptlon of PACK is that data-
bases that are created for the first time must be
efficiently orgamzed Another assumption 1s that
the database will remam relatively static How-
ever, the database need not be absolutely static
the INSERT and DELETE algonthms given by
Guttman can still be used to insert and delete
data obJects Indeed, it is mtuitively appealmg to
suppose that INSERT and DELETE will perform
well on a PACKed R-tree INSERT, for example,
mserts a new data ObJect mto the leaf that
requires the least enlargement, and, If that leaf IS
already filled, propagates node sphts upward
toward the root Such sphts, of course,, would be
mevltable with the first few insertions, smce the
packed nodes are already filled However, R-trees
created by PACK are presumed to exist in at least
a tentatively final state INSERT may thus select
from a large number of leaves so that the “least
enlargement” is mmlmized Hence, INSERT (and
analogously DELETE) and PACK can complement
each other, and such an combmatlon can be used
effectively m the creation and mamtenance of
dynamic R-trees

3.5. Empirical Results

We ran some expenments comparmg
Guttman’s INSERT and PACK The experiments
were performed in a straghtforward fashion The
parameter J, specifying the number of data
ObJects, was allowed to range over selected values

from 10 to 900 Data ObJects were points havmg
coordinates (x,y), (05x5 1000, O<y< lOOO), and
were randomly generated with a uniform dlstnbu-
tlon m the plane Each algonthm used the same
set of points for equal values of J to construct an
R-tree For each algorithm and each value of J,
we measured and recorded the coverage (C) and
overlap (0) of the constructed R-tree, the total
nodes withm the R-tree (N), the depth (D) of the
R-tree, and the average number (A) of nodes
visited during 1000 random search queries The
search queries were of the simple form

“Is point (xl,yl) contained in the database?”

and again were identical for both algorithms for
equal values of J The results of these experiments
are shown in Table 1

As the results show, packmg the data ObJects
can result m sigmflcant savings in space and
search time

4. Conclusions

This paper presented a packing techmque for
R-trees which significantly improves direct spatial
search on pictonal databases This is achieved by
mmlmlzmg coverage and overlap of the leaf-nodes
of the R-trees

The formal the theoretlcal properties of the
PACK and the search algonthms will be reported
m a forthcommg report The search of the spatial
operators and functions employed by PSQL are
currently being implemented We are currently
mvestlgatmg the posslbllity of dynamic mvocation
of the PACK algorithm durmg insertions and dele-
tlons to efficiently perform a “local” reorganiza-
tlon This will achieve the search performance
obtained by the PACK algorithm for dynamically
reorganized R-trees

5. References

[Bayer & McCrelght 19721
Bayer, R , and McCrelght, EM , “Organiza-
tion and Maintenance of Large Ordered
Indices,” Acta Informatrca, Vol 1, No 3, 1972,
pp 173-189

[Chamberlm et al 19761
Chamberhn, D D , “SEQUEL 2 A Umfled
Approach to Data Deflmtion, Mampulation,
and Control,” IBM J Research and Develop-
ment, Vol 20, No 6, 1976, pp 560-575

25

[Chang 19811
Chang, S K , “Pictorial Information Systems
Guest Editor’s Introduction,” IEEE Com-
puter, Vol 14, No 11, November 1981

[Chang & Fu 19811
Chang, N S , and Fu, K S , “Picture Query
Languages for Pictorial Data-Base Sys-
tems,” IEEE Computer, Vol 14, No 11,
November 1981

[Chang & Kunn 19811
Chang, S K , and Kunn, L K , “Plctonal
Database Systems,” IEEE Computer, Vol 14,
No 11, November 1981

[Fmkel & Bentley 19841
Fmkel, R A , Bentley, J L , “Quad-Trees - A
Data Structure for Retrieval on Composite
Keys,” Acta Informatrca, Vol 4, 1984, pp l-
9

[Guttman 19841
Guttman, A, “R-TREES A Dynamic Index
Structure for Spatial Searching,” Proc of
ACM SIGMOD Conference on Management
of Data, Boston, June, 1984

[Kent 19791
Kent, W , “Llmitatlons of Record-Based Infor-
matron Models,” ACM Transactzons on Data-
base Systems, Vol 4, No 1, 1979, pp 107-
131

[Lm & Chang 19801
Lm, B S , and Chang, S K , “GRAIN - A Plc-
torml Database Interface,” IEEE Proc of the
Workshop on Pacture Data Descrrptton and
Management, Asllomar, Cahforma, August
1980

[McKeown 1983a]
McKeown, D M , Jr , “Concept Maps,” Dept
of Computer Science, Carnegie-Mellon Univer-
sity, Technical Report CMU-CS-83-117, April
27, 1983

[McKeown 1983b]
McKeown, D M , Jr, “MAPS The Orgamza-
tlon of a Spatial Database System Usmg
Imagery, Terrain, and Map Data,” Dept of
Computer Science, Carnegie-Mellon

University, Technical Report CMU-CS-83-136,
July 17, 1983

[Powell & Linton]
Powell, M and Lmton, M , “Database Sup-
port for Programmmg Environments,” Proc
Engmeerrng Design Apphcateons ojACM SIG-
MOD Database Week, San Jose, May 23-26,
1983

[Roussopoulos 19841
Roussopoulos, N , “Intenslonal Semantics of
the Relatlonal Model,” Dept of Computer
Science, Umverslty of Maryland, January
1984

[Roussopoulos & Leifker 19841
Roussopoulos, N , Lelfker, D , “An Introduc-
tion to PSQL A Pictonal Structured
Query Language,” IEEE Workshop on Vasual
Languages, firoshlma, Japan, December 6-8,
1984

[Stonebraker et al 19831
Stonebraker, M , Rubenstem, J , Guttman,
A, “Apphcatlon of Abstract Data Types
and Abstract IndIces,” Engrnecrgng Desagn d
Applacataons, Database Week, ACM SIGMOD,
San Jose, May 23-26, 1983

[Stonebraker et al 19841
Stonebraker, M , Anderson, E , Hanson, E ,
“QUEL as a Data Type,” Proc of ACM SIG-
MOD Conference on Management of Data,
Boston, June, 1984

[Tang 19801
Tang, G Y , “A Logical Data Organization for
the I database of Pictures an Alphanumerical
Data,” IEEE Proc of the Workshop on Pac-
ture Data Descrlptaon and Management, AB-
lomar, Cahforma, August, 1980

[Zamolo 19831
Zaniolo, C , “The Database Language GEM,”
Proc ACM-SIGMOD Conference on Manage-
ment of Data, San Jose, May 23-26, 1983

26

10
25
50
75

100
125
150
175
200
250
300
400
500
600
700
800
900

Code

GUTTMAN'S INSERT PACK ALGORITHM

68483 43731 1 4 2 217 39590 0 1 3 1424
74577 124311 2 12 4800 31230 144 2 9 2 249
70718 177809 3 28 7775 37421 1295 2 16 2 282
74561 229949 3 39 9 379 36152 1329 3 26 3 431
75234 235079 4 60 12 955 38271 994 3 35 3 645
77578 246084 4 73 14024 36476 1318 3 42 3658
77342 255692 4 86 14894 40145 2729 3 51 3 784
79869 255523 4 103 16 277 36432 2532 3 58 3 820
80034 295091 4 117 17870 33959 1394 3 68 3 873
79117 293730 4 142 18 585 40069 1946 3 83 3 897
78891 376731 4 167 20838 38438 1527 4 102 5 397
82116 553650 5 233 28 935 37558 965 4 135 5 418
85290 698248 5 302 36132 39820 1688 4 168 5 466
85253 749874 5 368 40799 39542 2106 4 202 5 276
86225 852205 5 438 45924 37016 1252 4 234 5 604
87418 1002339 6 507 55462 38614 1522 4 268 5 730
87640 1164809 6 573 63595 38808 1512 4 302 6 071

J = Number of Spatial Data Objects
C = Coverage of R-tree
0 = Overlap of R-tree
D = Depth of R-tree
N = Total number of nodes in R-tree
A = Average number of nodes vlslted

Table 1 Expenmental results over 100 random search queries

ALPEA 8 PICTORIAL
STRUCTUPSD PUERY LANGUAGE I

DATA &
ALPHA CONTROL > SPATIAL
PROCESSOR < > PROCESSOR

CONTROL
L

FIGURE 1.1,

27

I--------------------------------------,

Ichar :char Ireal I
I--------------------------------------,
Icity I state Ipopulation I
,-----------------------------------I
Ict 1st IPOP
I-------------------------------------I
lJACKSONVILLEIFLtlRID~ I 540.920 I
INEW DRLERNS ILOUISIANA I s57;m I
I51 LDUIS IHISDURI I 453.085 I
lHEflPHIS I TENNESSEE 64&356 I
INASHVILLE I TENNESSEE 4S5.651 I
,--------------------------------------I

Figure 2 la

FIGURE 2.2C

28

FIGURE 3.1

FIGURE 3,2

. .

l .

l .

. .

14

.

. .

c

29

I FIGURE 3,5

FIGURE 3.6

. . . .
m . . . l

FIGIJE 3.7A

r
. .

.

.
.

30

FIGURE 3.8A

FIGURE 3.X

31

