
 1

Component-Based Software Engineering: 

Technologies, Quality Assurance Schemes, and Risk 

Analysis Tools 

 

Cai Xia 

Supervisor: Prof. Michael R. Lyu 

Markers:   Prof. Kam-Fai Wong 

      Prof. Ada Fu 

 

Abstract 

    Component-based software development approach is based on the idea to develop 

software systems by selecting appropriate off-the-shelf components and then to assemble 

them with a well-defined software architecture. Because the new software development 

paradigm is much different from the traditional approach, quality assurance (QA) for 

component-based software development is a new topic in the software engineering 

community. In this paper, we survey current component -based software technologies, 

describe their advantages and disadvantages, and discuss the features they inherit. We 

also address QA issues for component-based software. As a major contribution, we 

propose a QA model for component-based software development, which covers 

component requirement analysis, component development, component certification, 

component customization, and system architecture design, integration, testing, and 

maintenance. 

    We also look at the advantages of the Analyzer for Reducing Module Operational Risk 

(RMOR) tool, and collect some widely adopted Java metrics and tool suites. As our future 

work we will upgrade ARMOR to windows platformed, off-shelf commercial components 

based, Java source code oriented risk analysis and evaluation tool.  



 2

1. Introduction   

    Modern software systems become more and more large-scale, complex and uneasily 

controlled, resulting in high development cost, low productivity, unmanageable software 

quality and high risk to move to new technology [15]. Consequently, there is a growing 

demand of searching for a new, efficient, and cost-effective software development 

paradigm.  

    One of the most promising solutions today is the component-based software 

development approach. This approach is based on the idea that software systems can be 

developed by selecting appropriate off-the-shelf components and then assembling them 

with a well-defined software architecture [12]. This new software development approach 

is very different from the traditional approach in which software systems can only be 

implemented from scratch. These commercial off-the-shelf (COTS) components can be 

developed by different developers using different languages and different platforms. This 

can be shown in Figure 1, where COTS components can be checked out from a 

component repository, and assembled into a target software system. 

 

 

 

 

 

 

 

Figure 1. Component-based software development 

Component-based software development (CBSD) can significantly reduce 

development cost and time-to-market, and improve maintainability, reliability and overall 

quality of software systems [13] [14]. This  approach has raised a tremendous amount of 

interests both in the research community and in the software industry. The life cycle and 

software engineering model of CBSD is much different from that of the traditional ones. 

This is what the Component-Based Software Engineering (CBSE) is focused. 

Up to now, software component technologies are an emerging technology, which is far 

... 

Component n

Component 
repository 

Component 1

Component 2

  select  

Software 
system 

assemb le 

Commercial Off-the-shelf (COTS) 
components 



 3

from being matured. There is no existing standards or guidelines in this new area, and we 

do not even have a unified definition of the key item “ component” . In general, however, 

a component has three main features: 1) a component is an independent and replaceable 

part of a system that fulfills a clear function; 2) a component works in the context of a 

well-defined architecture; and 3) a component communicates with other components by 

its interfaces [1]. 

To ensure that a component-based software system can run properly and effectively, the 

system architecture is the most important factor. According to both research community 

[2] and industry practice [5], the system architecture of component-based software 

systems should be a layered and modular architecture. This architecture can be seen in 

Figure 2. The top application layer is the application systems supporting a  

Figure 2. System architecture of component-based software systems 

business. The second layer consists of components engaged in only a specific business or 

application domain, includ ing components usable in more than a single application. The 

third layer is cross-business middleware components consisting of common software and 

interfaces to other established entities. Finally, the lowest layer of system software 

components includes basic components that interface with the underlying operating 

systems and hardware.  

Current component technologies have been used to implement different software 

systems, such as object-oriented distributed component software [23] and Web-based 

enterprise application [13]. There are also some commercial players involved in the 

software component revolution, such as BEA, Microsoft, IBM and Sun [7]. An 

outstanding example is the IBM SanFrancisco project. It provides a reusable distributed 

object infrastructure and an abundant set of application components to application 

developers [5]. 

 

Special business components

Common components

Basic components 

App2 
App1 

App3 
Application 

Layer 

Components 
Layer 



 4

2. Current Component Technologies 

    Some approaches, such as Visual Basic Controls (VBX), ActiveX controls, class 

libraries, and JavaBeans, make it possible for their related languages, such as Visual Basic, 

C++, Java, and the supporting tools to share and distribute application pieces. But all of 

these approaches rely on certain underlying services to provide the communication and 

coordination necessary for the application. The infrastructure of components (sometimes 

called a component model) acts as the “ plumbing”  that allows communication among 

components [1]. Among the component infrastructure technologies that have been 

developed, three have become somewhat standardized: OMG's CORBA, Microsoft's 

Component Object Model (COM) and Distributed COM (DCOM), and Sun's JavaBeans 

and Enterprise JavaBeans [7]. 

 

2.1 Common Object Request Broker Architecture (CORBA) 

CORBA is an open standard for application interoperability that is defined and 

supported by the Object Management Group (OMG), an organization of over 400 

software vendor and object technology user companies [11]. Simply stated, CORBA 

manages details of component interoperability, and allows applications to communicate 

with one another despite of different locations and designers. The interface is the only 

way that applications or components communicate with each other. 

The most important part of a CORBA system is the Object Request Broker (ORB). The 

ORB is the middleware that establishes the client-server relationships between 

components. Using an ORB, a client can invoke a method on a server object, whose 

location is completely transparent. The ORB is responsible for intercepting a call and 

finding an object that can implement the request, pass its parameters, invoke its method, 

and return the results. The client does not need to know where the object is located, its 

programming language, its operating system, or any other system aspects that are not 

related to the interface. In this way, the ORB provides interoperability among applications 

on different machines in heterogeneous distributed environments and seamlessly 

interconnects multiple object systems.  

CORBA is widely used in Object-Oriented distributed systems [23] including 

component-based software systems because it offers a consistent distributed 

programming and run-time environment over common programming languages, 



 5

operating systems, and distributed networks. 

 

2.2 Component Object Model (COM) and Distributed COM (DCOM) 

Introduced in 1993, Component Object Model (COM) is a general architecture for 

component software [9]. It provides platform-dependent, based on Windows and 

Windows NT, and language-independent component-based applications. 

COM defines how components and their clients interact. This interaction is defined 

such that the client and the component can connect without the need of any intermediate 

system component. Specially, COM provides a binary standard that components and their 

clients must follow to ensure dynamic interoperability. This enables on- line software 

update and cross-language software reuse [20]. 

As an extension of the Component Object Model (COM), Distributed COM (DCOM), 

is a protocol that enables software components to communicate directly over a network in 

a reliable, secure, and efficient manner. DCOM is designed for use across multiple 

network transports, including Internet protocols such as HTTP. When a client and its 

component reside on different machines, DCOM simply replaces the local interprocess 

communication with a network protocol. Neither the client nor the component is aware 

the changes of the physical connections. 

 

2.3 Sun Microsystems’s JavaBeans  and Enterprise JavaBeans  

Sun’s Java-based component model consists of two parts: the JavaBeans for client-side 

component development and the Enterprise JavaBeans (EJB) for the server-side 

component development. The JavaBeans component architecture supports applications of 

multiple platforms, as well as reusable, client-side and server-side components [19]. 

Java platform offers an efficient solution to the portability and security problems 

through the use of portable Java bytecodes and the concept of trusted and untrusted Java 

applets. Java provides a universal integration and enabling technology for enterprise 

application development, including 1) interoperating across  multivendor servers; 2) 

propagating transaction and security contexts; 3) servicing multilingual clients; and 4) 

supporting ActiveX via DCOM/CORBA bridges.  

JavaBeans and EJB extend all native strengths of Java including portability and 



 6

security into the area of component-based development. The portability, security, and 

reliability of Java are well suited for developing robust server objects independent of 

operating systems, Web servers and database management servers.  

 

2.4 Comparison among Current Component Technologies 

    Comparison among current component technologies can be found in [Brow98], 

[Pour99a] and [Szyp98]. Here we simply summarize these different features in Table 1. 

 

 CORBA EJB COM/DCOM 

Development 
environment 

 

Underdeveloped 

 

Emerging 

Supported by a wide range of 
strong development 
environments 

Binary 
interfacing 
standard 

Not binary standards Based on COM;  

Java specific  

 A binary standard for 
component interaction is the 
heart of COM 

Compatibility & 
portability 

Particularly strong in 
standardizing language 
bindings; but not so 
portable  

Portable by Java 
language 
specification; but not 
very compatible. 

Not having any concept of 
source-level standard of 
standard language binding. 

Modification & 
maintenance 

CORBA IDL for defining 
component interfaces, 
need extra modification & 
maintenance 

Not involving IDL 
files,  defining 
interfaces between 
component and 
container. Easier 
modification & 
maintenance. 

Microsoft  IDL for defining 
component interfaces, need 
extra modification & 
maintenance 

Services 
provided 

A full set of standardized 
services; lack of 
implementations 

Neither standardized 
nor implemented 

Recently supplemented by a 
number of key services 

Platform 
dependency 

Platform independent Platform independent Platform dependent 

Language 
dependency 

Language independent Language dependent Language independent 

 

Implementation 

Strongest for traditional 
enterprise computing 

Strongest on general 
Web clients. 

Strongest on the traditional 
desktop applications 

 

Table 1. Comparison of current component technologies 

 



 7

3. Quality Assurance for Component-Based Software Systems 

 

3.1 The Life Cycle of Component-Based Software Systems 

Component-based software systems are developed by selecting various components 

and assembling them together rather than programming an overall system from 

scratch, thus the life cycle of component-based software systems is different from that 

of the traditional software systems. The life cycle of component-based software 

systems can be summarized as follows [12]: 1) Requirements analysis; 2) Software 

architecture selection, construction, analysis, and evaluation; 3) Component 

identification and customization; 4) System integration; 4) System testing; 5) 

Software maintenance. 

The architecture of software defines a system in terms of computational 

components and interactions among the components. The focus is on composing and 

assembling components that are likely to have been developed separately, and even 

independently. Component identification, customization and integration is a crucial 

activity in the life cycle of component-based systems. It includes two main parts: 1) 

evaluation of each candidate COTS component based on the functional and quality 

requirements that will be used to assess that component; and 2) customization of those 

candidate COTS components that should be modified before being integrated into new 

component-based software systems. Integration is to make key decisions on how to 

provide communication and coordination among various components of a target 

software system. 

Quality assurance for component-based software systems should address the life 

cycle and its key activities to analyze the components and achieve high quality 

component-based software systems. QA technologies for component-based software 

systems are currently premature, as the specific characteristics of component systems 

differ from those of traditional systems. Although some QA techniques such as 

reliability analysis model for distributed software systems [21] [22] and 

component-based approach to Software Engineering [10] have been studied, there is 

still no clear and well-defined standards or guidelines for component-based software 

systems. The identification of the QA characteristics, along with the models, tools and 

metrics, are all under urgent needs. 



 8

 

3.2 Quality Characteristics of Components 

    As much work is yet to be done for component-based software development, QA 

technologies for component-based software development has to address the two 

inseparable parts: 1) How to certify quality of a Component ?  2) How to certify 

quality of software systems based on components? To answer the questions, models 

should be promoted to define the overall quality control of components and systems; 

metrics should be found to measure the size, complexity, reusability and reliability of 

components and systems; and tools should be decided to test the existing components 

and systems. 

To evaluate a component,  we must determine how to certify the quality of the 

component. The quality characteristics of components are the foundation to guarantee 

the quality of the components, and thus the foundation to guarantee the quality of the 

whole component-based software systems. Here we suggest a list of recommended 

characteristics for the quality of components: 1) Functionality; 2) Interface; 3) 

Usability; 4) Testability; 5) Maintainability; 6) Reliability. 

Software metrics can be proposed to measure software complexity and assure its 

quality [16] [17]. Such metrics often used to classify components include [6]: 

1) Size.  This affects both reuse cost and quality. If it is too small, the benefits will not 

exceed the cost of managing it. If it is too large, it is hard to have high quality. 

2) Complexity. This also affects reuse cost and quality. A too-trivial component is 

not profitable to reuse while a too-complex component is hard to inherit high 

quality. 

3) Reuse frequency. The number of incidences where a component is used is a solid 

indicator of its usefulness. 

4) Reliability.   The probability of failure-free operations of a component under 

certain operational scenarios [8]. 

 

4. A Quality Assurance Model for Component-Based Software Systems 

Because component-based software systems are developed on an underlying 



 9

process different from that of the traditional software, their quality assurance model 

should address both the process of components and the process of the overall system. 

Figure 3 illustrates this view. 

Many standards and guidelines are used to control the quality activities of software 

development process, such as ISO9001 and CMM model. In particular, Hong Kong 

productivity Council has developed the HKSQA model to localize the general SQA 

models [4]. In this section, we propose a framework of quality assurance model for the  

Figure 3. Quality assurance model for both components and systems 

component-based software development paradigm. The  main practices relating to 

components and  systems in this model contain the following phases: 1) Component 

requirement analysis; 2) Component development; 3) Component certification; 4) 

Component customization; 5) System architecture design; 6) System integration; 7) 

System testing; and 8) System maintenance. 

    Details of these phases and their activities are described as follows. 

 

4.1 Component Requirement Analysis 

Component requirement analysis is the process of discovering, understanding, 

documenting, validating and managing the requirements for a component. The 

objectives of component requirement analysis are to produce complete, consistent and 

relevant requirements that a component should realize, as well as the programming 

language, the platform and the interfaces related to the component. 

The component requirement process overview diagram is as shown in Figure 4. 

Initiated by the request of users or customers for new development or changes on old 

system, component requirement analysis consists of four main steps: requirements 

gathering and definition, requirement analysis, component modeling, and requirement 

validation.  The output of this phase is the current user requirement documentation, 

System 
Component 

Quality 
Assurance 
Model 



 10

which should be transferred to the next component development phase, and the user 

requirement changes for the system maintenance phase. 

 

4.2 Component Development 

Component development is the process of implementing the requirements for a 

well- functional, high quality component with multiple interfaces. The objectives of 

component development are the final component products, the interfaces, and 

development documents. Component development should lead to the final 

components satisfying the requirements with correct and expected results, 

well-defined behaviors, and flexible interfaces.  

The component development process overview diagram is as shown in Figure 5. 

Component development consists of four procedures: implementation, function 

testing, reliability testing, and development document. The input to this phase is the 

component requirement document. The output should be the developed component 

and its documents, ready for the following phases of component certification and 

system maintenance, respectively. 

4.3 Component Certification 

Component certification is the process that involves: 1) component outsourcing: 

managing a component outsourcing contract and auditing the contractor performance; 

2) component selection: selecting the right components in accordance to the 

requirement for both functionality and reliability; and 3) component testing: confirm 

the component satisfies the requirement with acceptable quality and reliability.  

The objectives of component certification are to outsource, select and test the 

candidate components and check whether they satisfy the system requirement with 

high quality and reliability. The governing policies are: 1) Component outsourcing 

should be charged by a software contract manager; 2) All candidate components 

should be tested to be free from all known defects; and 3) Testing should be in the 

target environment or a simulated environment. The component certification process 

overview diagram is as shown in Figure 6. The input to this phase should be 

component development document, and the output should be testing documentation 

for system maintenance. 



 11 

 

System Requirements

Component
Outsourcing

Component
Testing

Component
Selecting

Acceptance System
Maintenance

Specific Component
Requirements

 Component Released

Component
Functions

Well-Functional Component

 Component fit for the special
                 requirements

Contract Signoffs,
Payments

Reject

Component
Development

Document

Figure 5. Component development 
process overview 

Developers

Implementation

Self-Testing
(Function)

Self-Testing
( Reliability)

Development
Document

Component
Certification

System
Maintenance

Techniques required

Draft Component

Requirements

Well-Functional Component

Reliable Component

Submit
 For Reference

Existing
Fault

Component
Requirement

Document

System Requirements & Other
Component Requirements

Component
Customization

Component
Document

Component
Testing

Acceptance System
Maintenance

on

Specific System & Other
Component Requirements

 Component Changed

Component
Document

New Component Document

 Component fit for the special
                 requirements

Component
Document

Reject

Component
Development

Document

System
Integration Assemble

Figure 4.  Component requirement 
analysis process overview 

Requirements
Gathering and
Definition

Requirement
Analysis

Component
Modeling

Requirement
Validation

Component
Development

System
Maintenance

Draft User Requirement
             Documentation (URD)

Format &
Structure

Component Requirement
 Document (CRD)

Updated CRD with
             model included

Current URD
 User Requirement
 Changes

Data
Dictionary

 Structure for
naming &
Describing

Current
URD

Requirement
Document
Template

Request for new development
 or change

Initiators (Users, Customers,
Manager etc.)

Figure 7. Component customization 
process overview 

Figure 6. component certification 
process overview 



 12

4.4 Component Customization 

Component customization is the process that involves 1) modifying the component 

for the specific requirement; 2) doing necessary changes to run the component on 

special platform; 3) upgrading the specific component to get a better performance or a 

higher quality. 

The objectives of component customization are to make necessary changes for a 

developed component so that it can be used in a specific environment or cooperate 

with other components well. 

All components must be customized according to the operational system 

requirements or the interface requirements with other components in which the 

components should work. The component customization process overview diagram is  

as shown  in  Figure 7. The input to component customization is the system 

requirement,  the component requirement, and component development document. 

The output should be the customized component and document for system integration 

and system maintenance. 

 

4.5 System Architecture Design 

System architecture design is the process of  evaluating, selecting and creating 

software architecture of a component-based system. 

The objectives of system architecture design are to collect the users requirement, 

identify the system specification, select appropriate system architecture, and 

determine the implementation details such as platform, programming languages, etc. 

System architecture design should address the advantage for selecting a particular 

architecture from other architectures.  The process overview diagram is as shown in 

Figure 8.  This phase consists of system requirement gathering, analysis, system 

architecture design, and system specification. The output of this phase should be the 

system specification document for integration, and system requirement for the system 

testing phase and system maintenance phase. 

 

4.6 System Integration 



 13

System integration is the process of assembling components selected into a whole 

system under the designed system architecture. 

The objective of system integration is the final system composed by the selected 

components. The process overview diagram is as shown in Figure 9.  The input is the 

system requirement documentation and the specific architecture. There are four steps 

in this phase: integration, testing, changing component and re-integration (if 

necessary).  After exiting this phase, we will get the final system ready for the system 

testing phase, and the document for the system maintenance phase. 

 

4.7 System Testing 

System testing is  the process of evaluating a system to: 1) confirm that the system 

satisfies the specified requirements; 2) identify and correct defects in the system 

implementation. 

The objective of system testing is the final system  integrated by components 

selected in accordance to the system requirements. System testing should contain 

function testing and reliability testing. The process overview diagram is as shown in 

Figure 10. This phase consists of selecting testing strategy, system testing, user 

acceptance testing, and completion activities. The input should be the documents from 

component development and system integration phases. And the output should be the 

testing documentation for system maintenance.  

 

4.8 System Maintenance 

System maintenance is the process of providing service and maintenance activities 

needed to use the software effectively after it has been delivered. 

The objectives of system maintenance are to provide an effective product or service 

to the end-users while correcting faults, improving software performance or other 

attributes, and adapting the system to a changed environment.  

There shall be a maintenance organization for every software product in the 

operational use. All changes for the delivered system should be reflected in the related 

documents. The process overview diagram is as shown in Figure 11. According to the 

outputs from all previous phases as well as request and problem reports from users,  



 14

 

 

 

 

 

 

 

System
Requirement

System
Integration

Self-Testing

Component
Changing

Final
System

System
Maintenance

Requirements for New
Systems

 Draft System

Architecture

Fault Component

Selecting New Component

System Integration
Document

Current
Component

System
Architecture

System
Testing Final System

Component
Certification

Component
Requirement

Figure 8. System architecture 
design process overview 

Figure 9. System integration 
process overview 

 

System Design
Document

Testing
Strategy

System
Testing

User Acceptance
Testing

Test Completion
Activities

System
Maintenance

 Testing Requirements

 System Testing Plan

Test
Dependencies

System Tested

User Accepted System

System Integration
Document

System
Maintenance

(Previous
Software Life

Cycle)

Component
Development

Component
Document

System
Integration

Component
Document

System Test
Spec.

User Acceptance
Test Spec.

Figure 10. System testing process 
overview 

 

Users

Support
Strategy

Problem
Management

System
Maintenance

 Request and Problem Reports

User Support Agreement

 Documents,
 Strategies

Change Requests

All Previous
Phases

System
Testing

New Version

Figure 11. System maintenance process 
overview 

Initiators

System Requirement
Gathering

System Requirement
Analysis

System Architecture
Design

System
Specification

System
Integration

Requests for New Systems

 Draft System Requirements
          Document

Format &
Structure

System Requirement Document

System Architecure

System Specification
Document

Current
Document

Requirement
Document
Template

System
Testing System

Requirement

System
Maintenance



 15

system maintenance should be held for determining support strategy and problem 

management (e.g., identification and approval). As the output of this phase,  a new 

version can be produced for system testing phase for a new life cycle. 

 

5. ARMOR: A Software Risk Analysis Tool 

As we have mentioned before, there are  a lot of metrics and tools to measure and 

test the quality of a software system.  But little of them can integrate the various 

metrics together and compare the different results of these metrics, so that they can 

predict the quality  as well as the risk of the software. 

 

5.1 Purpose of ARMOR 

ARMOR(Analyzer of Reducing Module Operational Risk) is such a tool that is 

developed by Bell Lab in 1995 [24]. ARMOR can automatically identify the 

operational risks of software program modules. It  takes data directly from project 

database, failure database, and program development database, establishes risk 

models according to several risk analysis schemes, determines the risks of software 

programs, and display various statistical quantities for project management and 

engineering decisions. The tool can perform the following tasks during project 

development, testing, and operation: 1) to establish promising risk models for the 

project under evaluation; 2) to measure the risks of software programs within the 

project; 3) to identify the source of risks and indicates how to improve software 

programs to reduce their risk levels; and 4) to determine the validity of risk models 

from field data. 

ARMOR is designed for automating the procedure for the collection of software 

metrics, the selection of risk models, and the validation of established models. It 

provided the missing link of both performing sophisticated risk modeling and validate 

risk models against software failure data by various statistical techniques. 

 

5.2 Objective and Overview of ARMOR 

    The Objectives of ARMOR are summarized as follows: 



 16

1) To access and compute software data deemed pertinent to software characteristics. 

ARMOR access three major databases: project source code directory (for 

product-related metrics), program development history (for process-related 

metrics), and the Modification Request (MR) database (a failure report system at 

Bellcore). 

2) To compute product metrics automatically whenever possible. By measuring the 

project source files, ARMOR directly computes software code metrics related to the 

software product. 

3) To evaluate software metrics systematically. A preliminary analysis of the 

effectiveness of the computed and collected metrics is obtained by studying the 

correlation of these metrics to the software failure data in the MR database. This 

study provide information about the candidate metrics for the establishment of risk 

models. 

4)  To perform risk modeling in a user-friendly and user-flexible fashion. Metrics are 

selected with appropriate weighting to establish risk measures (i.e.,risk scores) of 

each software module. Several modeling schemes are provided in ARMOR. Risk 

models could be defined, removed, and executed easily at the user’s discretion. 

5) To display risks of software modules. Once computed, risk scores computed the risk 

models could be used to highlight each software module by different colors. Risk 

distribution can be demonstrated in various forms. 

6) To validate risk models against actual failure data and compare model performance. 

Using several validation criteria, the risk models are compared with actual failure 

data to determine their predictive accuracy. Model validation results are provided in 

a summary table. Validated models could be saved for a later reusage. 

7) To identify risky modules and to indicate ways for reducing software risks. Once a 

valid model is established, the risk score computed for each module can be 

compared with the risk score contributed by the individual metric components. This 

process is iterated to identify the dominanting metrics which need to be addressed 

for the reduction of module operations risk. 

 

5.2 Architecture of ARMOR 



 17

     Table 3. shows the high-level architecture for ARMOR. 

 

Table 3. High-level architecture for ARMOR 

 

5.3 Context of ARMOR 

   ARMOR is composed of seven major functional areas: 

1) File Operations (“ File”  menu) 

2) Selecting Scope (“ Scope”  menu) 

3) Computing and Selecting Metrics (“ Metrics”  menu) 

4) Model Definition and Execution (“ Models”  menu) 

5) Risk Evaluation (“ Evaluation”  menu) 

6) Model Validation (“ Validation”  menu) 

7) Help System (“ Help”  menu) 

 

    The on-screen appearances of the six main functions above are showed in the 

following figures. It can be seen that the application of risk modeling and analysis to 

software modules is a straightforward process. Users are also given a considerable 

amount of choices in constructing and applying risk models.  



 18
 



 19

6. Risk Analysis and Evaluation Tool for CBSD 

    The complete functionality of ARMOR was not implemented, and it is only a 

prototype of the risk analysis tool. ARMOR was implemented in a UNIX X-windows 

environment, using Extended Tcl/Tk as its interface builder.  

    Based on the special features and process of component-based software 

development, and the idea of ARMOR, we propose to upgrade ARMOR to the 

windows-based application that aims at the evaluation and risk analysis of the 

component-based software system. Because most of the off-commercial components 

now use Java as their programming language, such features related to Java should be 

addressed in our new evaluation tool. 

 

6.1 Java Features Addressed in the Metrics 

According to [25], the main three metrics categories related to object-oriented 

programming such as Java are: 1) Inheritance metrics, such as the Depth of 

Inheritance Tree (DIT) and the Number of Children (NOC); 2) Communication 

metrics, such as Response For a Class (RFC), Coupling Between Objects (CBO), and 

Lack of Cohesion in Methods (LCOM); 3)Complexity metrics, such as the 

Cyclomatic Complexity (CC) and the Weighted Methods per Class (WMC). 

Inheritance metrics are used to examine the inheritance hierarch of object-oriented 

programs; the communication metrics estimate the internal and external 

communication of software components; and the complexity metrics measure the 

logical structure complexity of selected components. 

In another recent research that extends software quality assessment techniques to 

Java systems, the metrics that the researchers choose can be divided into five main 

categories: [26] 

1) Java Classes: This analysis aims to evaluate the complexity of the system classes. 

Class complexity can be characterized by its length, by the number and the type of 

methods it declares. 

2) Program Coupling: This analysis provides indicators of program coupling. 

Program coupling is defined by dependencies between parts of the system. 

3) Java Methods: This analysis evaluates the complexity of the Java methods, 



 20

including the length, number of parameter and number of variables of a method. 

4) Hierarchical Structure: This analysis looks at the hierarchical structure of the 

program in order to evaluate the maintainability of the program.  

5) Clone Detection: This is to identify whether code duplications exists in components. 

Code duplications can reduce software maintenance costs and improve quality. 

 

6.2 Some Widely-used Metrics in Current Components Market 

    Based on the features of Java programming language and the widely used off-shelf 

commercial components,  there are some metric suites to address this field. We have 

collected some well-adopted metrics and testing tools on component marketing today.  

They are Metamata Metrics and JProbe Metrics. 

 

Metamata Metrics 

    Metamata Metrics calculates global complexity and quality metrics statically from 

Java source code, helps organize code in a more structured manner and facilitates the 

QA process [27]. It has the following features: 

?? Most standard object oriented metrics such as object coupling and object 

cohesion  

?? Traditional software metrics such as cyclomatic complexity and lines of code  

?? Can be used on incomplete Java programs or programs with errors - and 

consequently, can be used from day one of the development cycle  

?? Obtain metrics at any level of granularity (methods, classes...)  

?? Performs statistical aggregations (mean, median...)  

?? Works with both JDK 1.1 and JDK 1.2  

 

   This is the examples of Metamata Metrics: 

 

 



 21

 

Metric Measures Description 

Cyclomatic 
Complexity 

Complexity The amount of decision logic in the 
code 

Lines of Code Understandability, 
maintainability 

The length of the code; related 
metrics measure lines of comments, 
effective lines of code, etc. 

Weighted 
Methods per 
Class 

Complexity, 
understandability, 
reusability 

The number of methods in a class 

Response for a 
Class 

Design, usability, 
testability 

The number of methods that can be 
invoked from a class through 
messages 

Coupling 
Between 
Objects 

Design, reusability, 
maintainability 

The number of other classes to which 
a class is coupled 

Depth of 
Inheritance Tree 

Reusability, testability The depth of a class within the 
inheritance hierarchy 

Number of 
Attributes 

Complexity, 
maintainability 

The amount of state a class maintains 
as represented by the number of fields 
declared in the class 

Table 4. Examples of Metamata Metrics 

  

JProbe Metrics 

   The JProbe from KL Group has different suites of metrics/tools for different purpose 

of use [28]. They are designed to help developers build robust, reliable, high-speed 

business applications in Java. Here is what the JProbe Developer Suite includes: 

?? JProbe Profiler and Memory Debugger - eliminates performance bottlenecks 

and memory leaks in your Java code  

?? JProbe Threadalyzer - detects deadlocks, stalls and race conditions  

?? JProbe Coverage - locates and measures untested Java code.  

    JProbe Developer Suite paints an intuitive, graphical picture of everything from 

memory usage to calling relationships, helping you navigate to the root of the problem 



 22

quickly and easily. 

    Metamata metrics and Jprobe suites are both used in the QA Lab of Flashline, a  

industry leader in providing software component products, services and resources that 

facilitate the rapid development of software systems for business.  We have collected 

them to try to use the result of such metrics, or integrate them into our risk analysis and 

evaluation tool that is based on the idea of ARMOR. 

 

7. Conclusion and Future Work 

In this paper, we survey current component-based software technologies and the 

features they inherit. We propose a QA model for component-based software 

development, which covers both the component QA and the system QA as well as their 

interactions.  

We also look at the advantages of the ARMOR tool, and collect some widely 

adopted Java metrics and tool suites. As our future work we will upgrade ARMOR to 

windows platformed , off-shelf commercial components based, Java source code 

oriented risk analysis and evaluation tool.  

 As our future work, we will use the results of Metamata Metrics and JProbe 

Developer Suites in the new ARMOR tool, and may try to integrate them into the new 

tool. The new ARMOR tool targets to evaluate and analyze the quality and the risk of 

the components, as well as the component-based software systems. 

 

                



 23

 

References 

 

[1] A.W.Brown, K.C. Wallnau, “  The Current State of CBSE, “  IEEE Software,  Volume: 15 
5, Sept.-Oct. 1998,  pp. 37 – 46. 

[2] M. L. Griss, “  Software Reuse Architecture, Process, and Organization for Business 
Success, “   Proceedings of the Eighth Israeli Conference on Computer Systems and 
Software Engineering, 1997, pp. 86-98. 

[3] P.Herzum, O.Slims, “  Business Component Factory - A Comprehensive Overview of 
Component-Based Development for the Enterprise,”   OMG Press, 2000. 

[4] Hong Kong Productivity Council, http://www.hkpc.org/itd/servic11.htm, April, 2000. 

[5] IBM: http://www4.ibm.com/software/ad/sanfrancisco, Mar, 2000. 

[6] I.Jacobson, M. Christerson, P.Jonsson, G. Overgaard, “ Object-Oriented Software 
Engineering: A Use Case Driven Approach,”  Addison-Wesley Publishing Company, 1992. 

[7] W. Kozaczynski, G. Booch, “ Component-Based Software Engineering,”  IEEE Software 
Volume: 155, Sept.-Oct. 1998, 

 pp. 34–36. 

[8] M.R.Lyu (ed.), Handbook of Software Reliability Engineering, McGraw-Hill, New 
York, 1996. 

[9] Microsoft:http://www.microsoft.com/isapi, Mar, 2000. 

[10] J.Q. Ning, K. Miriyala, W. Kozaczynski,, “ An Architecture-Driven, Business-Specific, 
and Component-Based Approach to Software Engineering,”  Proceedings Third 
International Conference on Software Reuse: Advances in Software Reusability, 1994, pp. 
84 -93. 

[11] OMG: http://www.omg.org/corba/whatiscorba.html, Mar, 2000. 

[12] G. Pour, “ Component-Based Software Development Approach: New Opportunities and 
Challenges,”  Proceedings Technology of Object-Oriented Languages, 1998. TOOLS 26., 
pp. 375-383. 

[13] G. Pour, “ Enterprise JavaBeans, JavaBeans & XML Expanding the Possibilities for 
Web-Based Enterprise Application Development,”  Proceedings Technology of 
Object-Oriented Languages and Systems, 1999, TOOLS 31, pp.282-291. 

[14] G.Pour, M. Griss, J. Favaro, “ Making the Transition to Component-Based Enterprise 
Software Development: Overcoming the Obstacles – Patterns for Success,”  Proceedings of 
Technology of Object-Oriented Languages and systems, 1999, pp.419 – 419. 

[15] G.Pour,  “ Software Component Technologies: JavaBeans and ActiveX,”  Proceedings 
of Technology of Object-Oriented Languages and systems, 1999, pp. 398 – 398. 

[16] C. Rajaraman, M.R. Lyu,” Reliability and Maintainability Related Software Coupling 
Metrics in C++ Programs,”  Proceedings 3rd IEEE International Symposium on Software 
Reliability Engineering (ISSRE'92), 1992, pp. 303-311. 

[17] C. Rajaraman, M.R. Lyu, “ Some Coupling Measures for C++ Programs,”  Proceedings 



 24

TOOLS USA 92 Conference, August 1992, pp. 225-234. 

[18] C.Szyperski, “ Component Software: Beyond Object-Oriented Programming,”  
Addison-Wesley, New York, 1998. 

[19] SUN http://developer.java.sun.com/developer,Mar. 2000 

[20] Y.M.Wang, O.P.Damani, W.J. Lee, “ Reliability and Availability Issues in Distributed 
Component Ojbect Model (DCOM),”  Fourth International Workshop on Community 
Networking Proceedings, 1997, pp. 59 –63. 

[21] S.M. Yacoub, B. Cukic, H.H. Ammar, “ A Component-Based Approach to Reliability 
Analysis of Distributed Systems,”  Proceedings of the 18th IEEE Symposium on Reliable 
Distributed Systems, 1999, pp. 158 –167. 

[22] S.M.Yacoub, B. Cukic, H.H.Ammar, “ A Scenario-Based Reliability Analysis of 
Component-Based Software,”  Proceedings 10th International Symposium on Software 
Reliability Engineering, 1999, pp. 22 –31. 

[23] S.S.Yau, B. Xia, “ Object-Oriented Distributed Component Software Development 
based on CORBA,”   Proceedings of COMPSAC’98. The Twenty-Second Annual 
International, 1998,  pp. 246-251. 

[24]  M.R.Lyu, J.S.Yu, E. Keramidas, S.R. Dalal, “ ARMOR: Analyzer for Reducing 
Module Operational Risk,”  , Proceedings of FTCS'25. Twenty-Fifth International 
Symposium on Fault-Tolerant Computing, 1995.  pp. 137-142. 

[25] T. Systa, Yu Ping, H. Muller, “ Analyzing Java Software by Combining Metrics and 
Program Visualization,”  Proceedings of the Fourth European Software Maintenance and 
Reengineering, 2000.  pp.199 –208. 

[26] J.-F. Patenaude, E. Merlo, M. Dagenais, B. Lague, “ Extending software quality 
assessment techniques to Java systems,”   Proceedings of Seventh International Workshop 
on Program Comprehension, 1999.pp. 49–56. 

[27] Metamata http://www.metamata.com/metrics.html, Dec., 2000. 

[28] JProbe http://www.sitraka.com/software/jprobe/, Dec., 2000. 

 


