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Abstract

I mainly consider the task of learning classi�ers from data in this thesis. In

this context, I propose a common framework that combines two di�erent and

important paradigms in machine learning: global learning and local learn-

ing. Traditional global learning approaches focus on describing phenomena

by attempting to estimate a distribution from data. Based on the estimated

distribution, the global learning methods can then perform inferences, conduct

marginlizations, and make predictions. Although enjoying a long and distin-

guished history and containing many good features, e.g., a relatively simple

optimization, and the 
exibility in incorporating global information such as

structure information and invariance etc, these learning approaches usually

have to assume a speci�c type of distribution a prior. Therefore, they are

widely argued for lacking the generality. On the other hand, local learning

methods do not estimate a distribution from data. Instead, they focus on

extracting only the local information, which is directly related to the learn-

ing task, i.e., the classi�cation in this thesis. Recent progress following this

trend has demonstrated that local learning approaches, e.g., Support Vector

Machines (SVM), outperform the global learning methods in many aspects.
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Despite of the success, local learning approaches actually discard plenty of im-

portant global information on data, e.g., the structure information. Therefore,

this restricts the learning performance of this types of learning schemes.

In this thesis, I thus develop a hybrid model named Maxi-Min Margin

Machine (M4), which successfully combines two largely di�erently but com-

plementary paradigms. Within this new framework, I propose a hybrid model

named Maxi-Min Margin Machine (M4). This model is demonstrated to con-

tain both appealing features in global learning and local learning. It not only

captures the global structure information from data, but it also provides a

task-oriented scheme for the learning purpose and inherits the superior per-

formance from local learning. As a major contribution, M4 successfully uni�es

many important learning models, including Support Vector Machines, Mini-

max Probability Machine (MPM), and Fisher Discriminant Analysis. Another

compelling feature of M4 is that it can be cast as a Sequential Second Order

Cone Programming problem, yielding a polynomial time complexity.

In addition, directly motivated from the Maxi-Min Margin Machine, I also

develop a regression model named Local Support Vector Regression (LSVR).

LSVR is demonstrated to provide a systematic and automatic scheme to locally

and 
exibly adapt the margin, which is globally �xed in the standard Support

Vector Regression (SVR), a state-of-the-art regression model. Therefore, it

can tolerate the noise adaptively. The proposed LSVR is promising in the

sense that it not only adequately considers the local information of the data

in approximating functions, but more importantly, it includes special cases,

which enjoy a physical meaning very much similar to the standard SVR. Both

theoretical and empirical investigations demonstrate the advantages of this

new model.

Another important contribution of this thesis is that I also develop a novel

global learning model called Minimum Error Minimax Probability Machine

(MEMPM). Although still within the framework of global learning, this model
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does not need to assume any speci�c distribution beforehand and represents

a distribution-free Bayes optimal classi�er in a worst-case scenario. This thus

makes the model distinguished from the traditional global learning models,

especially the traditional Bayes optimal classi�er. One promising feature of

MEMPM is that it can derive an explicit accuracy bound under a mild condi-

tion, leading to a good generalization performance for future data.

The fourth critical contribution of this thesis is the development of the

Biased Minimax Probability Machine (BMPM) model. In spite of the fact

that it is a special case of MEMPM, I make this model distinguished because

BMPM provides the �rst systematic and rigorous approach for a kind of im-

portant learning tasks, namely, the biased learning or imbalanced learning.

Di�erent from traditional imbalanced (biased) learning methods, BMPM can

quantitatively and explicitly incorporate a bias for one class and consequently

emphasizes the more important classes. A series of experiments demonstrate

that BMPM is very promising in imbalanced learning and medical diagnosis.
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Chapter 1

Introduction

The objective of this thesis is to establish a framework which combines two

di�erent paradigms in machine learning: global learning and local learning.

The deriving combined model demonstrates that a hybrid learning of these

two di�erent schools of approaches can outperform each isolated approach

both theoretically and empirically. Global learning focuses on describing a

phenomenon or modeling data in a global way. For example, a distribu-

tion over the variables is usually estimated for summarizing the data. Its

output can usually reconstruct the data. This school of approaches, includ-

ing Bayesian Networks [46, 54, 148], Gaussian Mixture Models [13, 103], and

Hidden Markov Models [8, 126], has a long and distinguished history, which

has been extensively applied in arti�cial intelligence [131], pattern recogni-

tion [47], computer vision [45], etc. On the other hand, local learning does

not intend to summarize a phenomenon, but builds learning systems by con-

centrating on some local parts of data. It lacks the 
exibility yet surprisingly

demonstrates superior performance to global learning according to recent re-

searches [17, 70, 132]. In this thesis, a bridge has been established between

these two di�erent paradigms. Moreover, the resulting principled framework

subsumes several important models, which respectively locate themselves into

the global learning paradigm and the local learning paradigm.

In this chapter, we address the motivations of the two di�erent learning

1
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Figure 1.1: Two classes of two-dimensional data.

frameworks. As a summary, we present the objectives of this paper and outline

the contributions. Finally, we provide an overview of the rest of this thesis.

1.1 Learning and Global Modeling

When studying real world phenomena, scientists are always wondering whether

some underlying laws or nice mathematic formulae exist for governing these

complex phenomena. Moreover, in practice, due to incomplete information,

the phenomena are usually nondeterministic. This motivates to base proba-

bilistic or statistical models to perform a global investigation on sampled data

from the phenomena. A common way for achieving this goal is to �t a den-

sity on the observations of data. With the learned density, people can then

incorporate prior knowledge, conduct predictions, and perform inferences and

marginalizations. One main category in the framework of global learning is

the so-called generative learning. By assuming a speci�c mathematic model

on the observations of data, e.g., a Gaussian distribution, the phenomena can
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Figure 1.2: An illustration of distribution-based classi�cations (also known as
the Bayes optimal decision theory). Two Gaussian mixtures are engaged to
model the distribution of two classes of data respectively. The distribution can
then be used to construct the decision plane.

therefore be described or re-generated. Figure 1.1 illustrates such an example.

In this �gure, two classes of data are plotted as �’s for the �rst class and �’s
for the other class. The data can thus be modeled as two di�erent mixtures

of Gaussian distributions as illustrated in Figure 1.2. By knowing only the

parameters of these distributions, one can then summarize the phenomena.

Furthermore, one can clearly employ this information to distinguish one class

of data from the other class or simply know how to separate two classes. This

is also well-known as Bayes optimal decision problems [51, 38].

In the development of learning approaches within the community of ma-

chine learning, there has been a migration from the early rule-based meth-

ods [50, 156] wanting more involvement of domain experts, to widely-used prob-

abilistic global models mainly driven by data itself [24, 47, 62, 72, 117, 163].
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However, one question for most probabilistic global models is what kind of

global models, or more speci�cally, which type of densities should be speci-

�ed beforehand for summarizing the phenomena. For some tasks, this can be

prescribed by a slight introduction of domain knowledge from experts. Un-

fortunately, due to both the increasing sophistication of real world learning

tasks and active interactions among di�erent subjects of research, it is more

and more di�cult to obtain fast and valuable suggestions from experts. A

further question is thus proposed, i.e., what is the next stop in the community

of machine learning, after experiencing a migration from rule-based models

to probabilistic global models? Recent progress in machine learning seems to

imply a local learning as a solution.

1.2 Learning and Local Modeling

Global modeling addresses describing phenomena, no matter whether the sum-

marized information from the observations is applicable to speci�c tasks or

not. Moreover, the hidden principle under global learning is that informa-

tion can be accurately extracted from data. On the other hand, local learn-

ing [49, 138, 141], which recently attracts active attentions in the machine

learning community, usually regards that a general and accurate global learn-

ing is an impossible mission. Therefore, local learning focuses on capturing

only local yet useful information from data. Furthermore, recent research

progress and empirical study demonstrates that this much di�erent learning

paradigm is superior to global learning in many facets.

In further details, instead of globally modeling data, local learning is more

task-oriented. It does not aim to estimate a density from data as in global

learning, which is usually an intermediate step for many tasks such as pattern

recognitions (note that the distribution or density obtained by global learn-

ing actually is not directly related to the classi�cation itself); it also does not
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the decision plane

Figure 1.3: An illustration of local learning (also known as the Gabriel Graph
classi�cation). The decision boundary is just determined by some local points
indicated as �lled points.

intend to build an accurate model to �t the observations of data globally. Dif-

ferently, it only extracts useful information from data and directly optimizes

the learning goal. For example, when used in learning classi�ers from data,

only those observations of data around the separating plane need to be accu-

rate, while inaccurate modeling over other data is certainly acceptable for the

classi�cation purpose. Figure 1.3 illustrates such an problem. In this �gure,

the decision boundary is constructed only based on those �lled points, while

other points make no contributions to the classi�cation plane (the decision

boundary is given based on the Gabriel Graph method [6, 73, 164]).

However, although containing promising performance, local learning ap-

pears to locate itself at another extreme end to global learning. Employing

only local information may lose the view of data. Consequently, sometimes,

it cannot grasp the data trend, which is critical for guaranteeing better per-

formance for future data. This can be seen in the example as illustrated in

Figure 1.4. In this �gure, the decision boundary (also constructed by the

Gabriel Graph classi�cation) is still determined by some local points indicated
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the decision plane

Figure 1.4: An illustration on that local learning cannot grasp data trend.
The decision boundary (constructed by the Gabriel Graph classi�cation) is
determined by some local points indicated as �lled points. It, however, loses
the data trend. The decision plane should be obviously closer to the �lled
squares rather than locating itself in the middle of �lled �’s and �’s.

as �lled points. Clearly, this boundary does not grasp the data trend. More

speci�cally, the class associated with �’s is obviously more scattered than the

class associated with �’s in the axis indicated as dashed red line. Therefore,

a more promising decision boundary should lie closer to �lled �’s than those

�lled �’s instead of lying midway between �lled points. A similar example

can also be seen in Chapter 2 on a more principled local learning model, i.e.,

the current state-of-the-art classi�er, Support Vector Machines (SVM) [153].

Targeting this problem, we then suggest a hybrid learning in this thesis.

1.3 Hybrid Learning

There are complementary advantages for both local learning and global learn-

ing. Global learning summarizes data and provides practitioners with knowl-

edge on the structure, independence, trend of data etc, since with the precise

modeling of phenomena, the observations can be accurately regenerated and
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therefore can be studied or analyzed thoroughly. However, this also presents

di�culties in how to choose a valid model to describe all the information. In

comparison, local learning directly employs part of information, critical for the

speci�c oriented tasks, and does not assume models to re-synthesize/restore

the whole road-map of data. Although demonstrated to be superior to global

learning in many facets of machine learning, it may lose some important global

information. The question here is thus, can reliable global information, inde-

pendent of speci�c model assumptions, be combined into local learning? This

question clearly motivates a hybrid learning of two largely di�erent schools of

approaches, which is also the objective of this thesis.

1.4 Contributions

In this thesis, we aim to propose a hybrid learning scheme to combine two

di�erent paradigms, namely global learning and local learning. Within this

scheme, we propose a hybrid model, named the Maxi-Min Margin Machine

(M4), demonstrated to contain both merits of global learning in represent-

ing data and the advantages of local learning in handling tasks directly and

e�ectively. Moreover, adopting the viewpoint of local learning, we also de-

velop a global learning model, called the Minimum Error Minimax Probability

Machine (MEMPM), which does not assume speci�c distributions on data and

thus distinguishes itself from traditional global learning approaches. The main

contributions of this thesis are further described as follows in detail.

� Proposed the Maxi-Min Margin Machine model, a hybrid learning frame-

work successfully combining global learning and local learning

� A uni�ed framework of many important models

As will be demonstrated, our proposed hybrid model successfully

uni�es both important models in local learning, e.g., the Support
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Vector Machines [17], and signi�cant models in global learning, such

as the Minimax Probability Machine (MPM) [85] and the Fisher

Discriminant Analysis (FDA) [47].

� With the generalization Guarantee

Various statements from many views such as the sparsity and Mar-

shall and Olkin Theory [101, 121] will be presented for providing

the generalization bound for the combined approach.

� A sequential Conic Programming solving method

Besides the theoretic advantages of the proposed hybrid learning,

we also tailor a sequential Conic Programming method [124, 144] to

solve the corresponding optimization problem. The computational

cost is shown to be polynomial and thus the proposed M4 model

can be solved practically.

� Developed a general global learning model, the Minimum Error Minimax

Probability Machine

� A worst-case distribution-free Bayes optimal classi�er

Di�erent from traditional Bayes optimal classi�ers, MEMPM does

not assume distributions for the data. Starting with the Marshall

and Olkin theory, this model attempts to model data under the

minimax schemes. It does not intend to extract exact information

but the worst-case information from data and thus presents an im-

portant progress in global learning.

� Derived an explicit error bound for future data

Inheriting the advantages of global learning, the proposed general

global learning method contains an explicit worst-case error bound

for future data under a mild condition. Moreover, the experimental

results suggest that this bound is reliable and accurate.
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� Proposed a sequential Fractional Programming optimization

We have proposed a Fractional Programming optimization method

for the MEMPM model. In each iteration, the optimization is shown

to be a pseudo-concave problem, which thus guarantees that each

local solution will be the global solution in this step.

� Implemented a Matlab toolbox for this general global learning method

We have released a Matlab toolbox for the novel global model. De-

tailed comments, demos, and examples are provided for its easy

usage [160, 161].

� Developed a global learning method called Biased Minimax Probability

Machine (BMPM) for biased or imbalanced learning

� Presented a rigorous and systematic treatment for biased learning

tasks

Although being a special case of our proposed general global learn-

ing model, MEMPM, this model provides a quantitative and rig-

orous approach for biased learning tasks, where one class of data

are always more important than the other class. Importantly, with

explicitly controlling the accuracy of one class, this branch model

can precisely impose biases on the important class.

� Containing explicit generalization bounds for both classes of data

Inheriting the good feature of the MEMPM model, this model also

contains explicit generalization bounds for both classes of data.

This therefore guarantees a good prediction accuracy for future

data.

� Developed a novel regression model Local Support Vector Regression (LSVR)

� Provided a systematic and automatic treatment in adapting margins

Motivated from M4, LSVR focuses on considering the margin setting
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D: Biased Minimax Probability Machine
E: Maxi-Min Margin Machine
F: Local Support Vector Regression
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Figure 1.5: The relation among the developed models in this thesis

locally. When compared to the regression model of SVM, i.e., the

Support Vector Regression (SVR), this novel regression model is

shown to be more robust with respect to the noise of data in that

it contains the volatile margin setting.

� Incorporated special cases very much similar to the standard SVR

When considering a consistent trend for all data points, the LSVR

can derive special cases very much similar to the standard SVR. We

further demonstrate that in a meaningful assumption, the standard

SVR is actually the special case of our LSVR model.

In a summary, the relation among our developed models is described in

Figure 1.5.
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1.5 Scope

This thesis states and refers to the learning �rst as statistical learning, which

appears to be the current main trend of learning approaches. We then further

restrict the learning in the framework of classi�cation, one of the main prob-

lems in machine learning. The corresponding discussion on di�erent models

including the conducted analysis of the computational and statistical aspects

of machine learning are all subject to the classi�cation tasks. Nevertheless, we

will also extend the content of this thesis to regression problems, although it

is not the focus of this thesis.

1.6 Thesis Organization

The rest of this thesis is organized as follows:

� Chapter 2

We will review di�erent learning paradigms in this chapter. We will

establish a hierarchy graph attempting to categorize various models in

the framework of local learning and global learning. We will then base

this graph to describe and discuss these models. Finally, we motivate

the Minimum Error Minimax Probability Machine and the Maxi-Min

Margin Machine.

� Chapter 3

We will develop a novel global learning model, called the Mininum Er-

ror Minimax Probability Machine. We will demonstrate how this new

model represents the worst-case Bayes optimal classi�er. We will detail

its model de�nition, provide interpretations, establish a robust version,

extend to nonlinear classi�cations, and present a series of experiments

to demonstrate the advantages of this model.
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� Chapter 4

We will present the Maxi-Min Margin Machine, which successfully com-

bines two di�erent but complementary learning paradigms, i.e., local

learning and global learning. We will show how this model incorporates

the Support Vector Machine, the Minimax Probability Machine, and the

Fisher Discriminant Analysis as special cases. We will also demonstrate

the advantages of Maxi-Min Margin Machine by providing theoretical,

geometrical, and empirical investigations.

� Chapter 5

An extension of the proposed MEMPM model will be discussed in this

chapter. More speci�cally, the Biased Minimum Minimax Probability

Machine will be discussed and applied into the imbalanced learning tasks.

We will review di�erent criteria for evaluating imbalanced learning ap-

proaches. We will then base these criteria to tailor BMPM into this type

of learning. Both illustrations on toy data sets and evaluations on real

world imbalanced and medical data sets will be provided in this chapter.

� Chapter 6

A novel regression model called the Local Support Vector Regression,

which can be regarded as an extension from the Maxi-Min Margin Ma-

chine, will be introduced in detail in this chapter. We will show that

our model can vary the tube (margin) systematically and automatically

according to the local data trend. We will show that this novel regres-

sion model is more robust with respect to the noise of data. Empirical

evaluations on both synthetic data and real �nancial time series data will

be presented to demonstrate the merits of our model with respect to the

standard Support Vector Regression.

� Chapter 7

We will then summarize this thesis and conduct discussions on future
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work.

We try to make each of these chapters self-contained. Therefore, in several

chapters, some critical contents, e.g., model de�nitions or illustrative �gures,

having appeared in previous chapters, may be brie
y reiterated.



Chapter 2

Global Learning Vs. Local

Learning | A Background

Review

In this chapter, we conduct a more detailed and more formal review on two

di�erent schools of learning approaches, namely, the global learning and local

learning. We �rst provide a hierarchy graph as illustrated in Figure 2.1 in

which we try to classify many statistical models into their proper categories,

either global learning or local learning. Our review will also be conducted

based on this hierarchy structure. To make it clear, we use �lled shapes to

highlight our own work in the graph.

Global learning �ts a distribution over data. If a speci�c mathematic

model, e.g., a Gaussian model, is assumed on the distribution, this is often

called generative learning, whose name implies that the mathematic formula-

tion of the assumed model governs the generation of data in the learning task.

To learn the parameters from the observations of data for the speci�c model,

several schemes have been proposed. This includes Maximum Likelihood (ML)

learning, which is easy to conduct but is less accurate, Conditional Likelihood

(CL) learning, which is usually hard to perform optimization but is more ef-

fective, and Bayesian Average (BA) learning, which has a comparatively short

14
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history but is more promising. As generative learning pre-assigns a speci�c

model before learning, it often lacks the generality and thus may be invalid

in many cases. This thus motivates the non-parametric learning, which still

estimates a distribution on data but assumes no speci�c mathematic genera-

tive models. The common way in this type of learning is to locally �t over

each observation a simple density and then sums all the local densities as the

�nal distribution for data. Although in some circumstances, this approach is

successful, it is criticized for requiring a huge quantity of training points and

containing a large space complexity. Di�erently, in this thesis, we will demon-

strate a novel global learning method, named Minimum Error Minimax Proba-

bility Machine (MEMPM). Although still in the framework of global learning,

it does not belong to non-parametric learning, therefore requiring no extremely

heavy storage spaces. Moreover, it does not assume any speci�c distribution

on data, which hence distinguishes itself from the traditional global generative

learning. As a critical contribution, MEMPM represents a distribution-free

Bayes optimal classi�er in a worst-case scenario. Furthermore, we will show

that this model incorporate two important global learning approaches, Biased

Minimax Probability Machine (BMPM) and Minimax Probability Machine

(MPM) [85, 86]. Since all approaches within the paradigm of global learning

requires summarizing the data information completely and globally, it thus

may waste computational resources and is widely argued to be less direct.

This motivates the local learning, which makes no attempt to model the data

globally, but focuses on extracting only those information directly related to

the task. This type of learning is often refereed to as discriminative learning in

the context of classi�cations. One famous model among them is Support Vec-

tor Machine (SVM). With the task-oriented, robust, computationally tractable

properties, SVM has achieved a great success and is considered as the current

state-of-the-art classi�er. Although local learning demonstrates superior per-

formance to traditional global learning, it appears to situate itself at another
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extreme end, which totally discards the useful global information, e.g., the

structure information of data.

Our suggestion is that we should combine these two di�erent but comple-

mentary paradigms. Towards this end, we then propose a new model called

Maxi-Min Margin Machine (M4), which not only successfully employs the

global structure information from data but also holds merits of local learning

such as robustness and superior classi�cation accuracies. As a critical contribu-

tion, M4, the hybrid learning model, represents a general model, successfully

shown to contain both local learning models and global learning models as

special cases. More speci�cally, it contains two signi�cant and popular global

learning models, i.e., Fisher Discriminant Analysis (FDA) [47] and Minimax

Probability Machine [84, 85, 86] as special cases. Meanwhile, SVM, the local

learning model can also be considered as one of its branches. In addition, M4

also demonstrates a strong connection with MEMPM, the novel general global

learning model.

In the following, we �rst present the problem de�nition, which will be used

throughout this thesis. We then base Figure 2.1 to provide introductions and

comments for each type of learning model sequently. Finally, we summarize

the review and conclude with the proposition of the hybrid framework, the

objective of this thesis.

2.1 Problem De�nition

Given a data set D consisting of N observations, where each observation is

of the form (z1; z2; : : : ; zn; c) (zi 2 R, for 1 � i � n, c 2 F, where F is

a �nite set), the basic learning problem is to construct a mapping rule or

a function f from fz1; z2; : : : ; zng called features or attributes to the output

c, denoted as the class variable, namely f(z1; z2; : : : ; zn;�; D) ! c, where �

means the function parameters. The function f should be not only as accurate
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as possible to �t the observations D, but also can robustly predict the class

for the new data. Sometimes, we also use � to denote the mapping model

f and its associated parameters. For simplicity, we often use z to denote

the n-dimensional variable fz1; z2; : : : ; zng. If we use zj, we refer it to the

j-th observation in D. Throughout this thesis, unless we provide statements

explicitly, bold typeface will indicate a vector or matrix, while normal typeface

will refer to a scale variable or the component of the vectors.

2.2 Global Learning

Global learning often describes the data by attempting to estimate a distribu-

tion over variables (z1; z2; : : : ; zn; c), denoted as p(z; c;�jD). The estimated

distribution can then be used to make predictions by calculating the probabil-

ity that a speci�c value of c will occur, when given an instance of features z.

In more details, the decision rule or the mapping function can be described as:

c = arg max
ck2F

p(ckjD; z) = arg max
ck2F

Z
p(ck;�jD; z)d�: (2.1)

By employing Bayes theory, one can transform the above joint probability (the

item inside the integral) into the following equivalent forms:

p(ck;�jD; z) =
p(ck; zjD;�)p(�jD)P

ck2F
R
p(ck; zjD;�)p(�jD)d�

: (2.2)

Since the denominator in the above does not in
uence the decision in practice,

the decision rule of (2.1) can be written into a relatively easily-calculated form:

c = arg max
ck2F

Z
p(ck; zjD;�)p(�jD)d�: (2.3)

Depending on how the model � is assumed on D, global learning can

be further divided into generative learning and non-parametric learning as
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elaborated in the following subsections.

2.2.1 Generative Learning

Generative learning often assumes a speci�c model on data D. For exam-

ple, a Gaussian distribution is assumed to be the underlying model to gen-

erate D. In this case, the parameters � refer to the mean and covariance

for the Gaussian distribution. There are many models, which belong to this

type of learning. Among them are Naive Bayes model [38, 78, 88], Gaussian

Mixture Model [10, 51, 56, 103], Bayesian Network [59, 60, 61, 63, 87, 117],

Hidden Markov Model [5, 143], Logistic Regression [71], Bayes Point Ma-

chine [58, 106, 130], Maximum Entropy Estimations [70] etc. The key problem

for generative learning is how to learn the parameters � from data. Generally,

in the literatures of machine learning, three schemes, Maximum Likelihood

learning, Conditional Likelihood learning, and Bayesian Average learning, are

engaged for estimating the parameters. We state these approaches one by one

in the following.

Maximum Likelihood Learning & Maximum A Posterior Learning

Considering that it is not always easy to calculate the integral in (2.3), ear-

lier researchers often try to compute some approximations of (2.3) instead.

This motivates the Maximum Likelihood learning and Maximum A Posterior

(MAP) learning [38, 117].

These learning methods replace (2.3) with the formulation below:

c = arg max
ck2F

p(ck; zjD;��) ; (2.4)

In the above, how �� are estimated thus discriminates MAP from ML. In
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MAP, �� are estimated as:

�� = arg max p(�jD) ; (2.5)

while in ML, the parameters are given as:

�� = arg max p(Dj�) : (2.6)

Observing (2.3), one can see that MAP actually enforces the approximated

conditional distribution over parameters as a delta function situating itself at

the most prominent �. Namely,

bp(�jD) =

8
<
:

1 if � = arg max p(�jD) ;

0 otherwise:
(2.7)

For ML, it is even simpler. This can be observed by looking into the relation

between MAP and ML:

arg max p(�jD) = arg max p(Dj�)p(�): (2.8)

Thus, compared to MAP, ML omits the item p(�), the prior probability over

the parameters. In practice, a model with a more complex structure may be

more possible to cause over-�tting, which means the model can �t the training

data perfectly while having a bad prediction ability on the test or future data.

In this sense, discarding the prior probability, ML lacks the 
exibility to favor

simple models by conditioning the prior probability [15, 150]. On the other

hand, MAP permits a regularization on the prior probability and thus contains

potentials to resist over-�tting problems.

When applied in practice, under independent, identically distributional

data (i.i.d.) conditions, rather than directly optimizing the original form, ML

estimations usually take the maximization on the log-likelihood , which can
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transform the multiplication form into an easily-solved additional one:

�� = arg max p(Dj�) = arg max log p(Dj�) = arg max
NX

j=1

log p(zjj�): (2.9)

Maximum Conditional Learning

Rather than computing the integral form, both the above ML learning and

MAP learning seek to use one speci�c point �� to calculate (2.3). The di�er-

ence between them lies in how they estimate the speci�c parameter ��. Com-

pared with the long history in using ML and MAP estimations, Maximum

Conditional learning enjoys a short span of time but has achieved state-of-the-

art performance in many domains such as speech recognition [10, 127, 158].

Maximum Conditional learning also focuses on adopting one certain �� to

simplify the computation of (2.3). Di�erently, the selection of �� is based on

maximizing a conditional likelihood de�ned as follows:

�� = arg max p(Cj�;Z) ; (2.10)

where C = fc1; c2; : : : ; cNg is the vector formed by the class label of each

observation in D, and Z = fz1; z2; : : : ; zNg corresponds to the data of the

attributes (or features) part in D. Similar to the relation between ML and

MAP, MC can also plug in a prior probability into the above formulae for

resisting over-�tting problems, i.e.,

�� = arg max p(Cj�;Z)p(�) ; (2.11)

By maximizing the conditional likelihood, MC is thus more direct and

classi�cation oriented. Note that only the conditional probability, which is

maximized above, is directly related to the classi�cation purpose. Maximizing
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other quantities as done in ML or MAP, possibly optimizes unnecessary infor-

mation for classi�cations, which is wasteful and imprecise. However, although

MC appears to be more precise, it is usually hard to conduct the optimiza-

tion due to the involvement of the conditional item. Such an example can

be seen in optimizing a tree-based Bayesian Networks [46]. Moreover, when

there is missing information, the optimization of MC may even present a more

tough problem in general, while in such circumstances, powerful Expectation

Maximization (EM) techniques [82, 105] can easily be applied in ML.

Bayesian Average Learning

It is noted that in ML, MAP and MC, for the easy calculation of (2.3) one

certain �� is adopted for approximations. However, although one point esti-

mation enjoys computational advantages in approximating (2.3), in practice

it may be very inaccurate and in this sense may impair the prediction abil-

ity of global learning. Aiming to solve this problem, recent researches have

suggested to use the Bayesian Average learning approaches. This type of ap-

proaches facilitates the computation of (2.3) by changing the integral into a

summation form based on sampling methods, e.g., Markov Chain Monte Carlo

methods [48, 74, 110, 111, 118].

Following this trend, many models are proposed. Among them are Bayesian

Point Machine [58, 106, 130] and Maximum Entropy Estimation [70]. Bayes

Point Machine restricts the averaging of the parameters in the version space,

which denotes the space where the training data can be perfectly classi�ed.

This proposed method is reported to contain a better generalization ability

within the global learning framework. But it is challenged to lack systematic

ways to extend its applications into non-separable data sets, where the version

space may include no candidate solutions. Maximum Entropy Estimation, on

the other hand, seems to provide a more 
exible and more systematic scheme

to perform the averaging of models. By trying to maximize an entropy-like
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objective, Maximum Entropy Estimation demonstrates some characteristics of

both global learning and local learning. However, this approach argues that

only two small data sets are used to evaluate its performance. Moreover, the

prior, usually unknown, plays an important role in this model, but has to be

assumed beforehand.

2.2.2 Non-parametric learning

In contrast with generative learning discussed in the above, non-parametric

learning does not assume any speci�c global models before learning. Therefore,

no risk will be taken on possible wrong assumptions on data. Consequently,

non-parametric learning appears to set a more valid foundation than generative

learning models. Typical non-parametric learning models in the context of

classi�cations consist of Parzen Window estimation [39] and the widely used

k-Nearest-Neighbor model [27, 129]. We will discuss these two models in the

following.

The Parzen Window estimation also attempts to estimate a density among

the training data. However it employs a totally di�erent way. Parzen window

�rst de�nes an n-dimensional cell hypercube region RN over each observation.

By de�ning a window function:

w(u) =

8
<
:

1 jujj � 1=2 j = 1; 2; : : : ; n

0 otherwise
(2.12)

the density is then estimated as

pN (z) =
1

N

NX

i=1

1

hN
w(

z� zi

hN
) ; (2.13)

where hN is de�ned as the length of the edge of RN .

From the above, one can observe that Parzen Window puts a local density
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Figure 2.2: An illustration of Parzen window estimation

over each observation, the �nal density is then the statistical result of averaging

all local densities. In practice, the window function can actually be general

functions including the most commonly-used Gaussian function. Figure 2.2

illustrates a density estimated by the Parzen window algorithm.

The k-Nearest-Neighbor method can be cast as designing a special cell over

each observation and then averages all the cell densities as the overall density

for data. More speci�cally, the cell volume VN is designed as follows: let the

cell volume be a function of the training data, by centering a cell around each

point zj and increasing the volume until kN samples are contained, where kN

depends on N . The local density for each observation is then de�ned as

pN (zj) =
kN=N

VN
: (2.14)

When used for classi�cations, the prediction is given by the class with the
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maximum posterior probability, i.e.,

c = arg max
ci2F

pN(cijz): (2.15)

Further, the posterior probability can be calculated as below:

pN(cijz) =
pN (ci; z)P
i2F pN (z; ci)

=
ki=N
VP

i2F
ki=N
V

=
ki
k
: (2.16)

Therefore, the prediction result is just the class with the maximum fraction of

the samples in a cell.

These non-parametric methods make no underlying assumptions on data

and appear to be more general in real cases. However, using no parameters

actually means using many \parameters" so that each parameter would not

dominate other parameters (in the discussed models, the data points can be

in fact considered as the \parameters"). In such a way, if one parameter

fails to work, it will not in
uence the whole system globally and statistically.

However, using many \parameters" also results in serious problems. One of the

main problems is that the density is overwhelmingly dependent on the training

samples. Therefore, to generate an accurate density, the number of samples

needs to be very large (much larger than would be required if we perform the

estimation by generative learning approaches). What is even worse is that the

number of data will unfortunately increase exponentially with the dimension

of data. Another disadvantage caused is its severe requirement for the storage,

since all the samples need to be saved beforehand in order to predict new data.

2.2.3 Minimum Error Minimax Probability Machine

Within the context of global learning, a dilemma seems existing: If we assume

a speci�c model as in generative learning, it looses the generality; if we instead

use non-parametric learning, it is impractical for high-dimension data. One
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question is then proposed, can we have an approach, which does not require a

large number of training samples for reducing complexities and also does not

assume speci�c models for maintaining the generality? Towards this end, we

propose Minimum Error Minimax Probability Machine in this thesis.

Unlike generative learning or non-parametric learning, Minimum Error

Minimax Probability Machine does not try to estimate a distribution over

data. Instead, it attempts to extract reliable global information from data

and estimates parameters for maximizing the minimal possibility that a fu-

ture data will fall into the correct class. More precisely, rather than seeking

to �nd an accurate distribution, MEMPM focuses on studying the worst-case

probability (which is relatively robust) to predict data. In terms of the style

in making decisions, MEMPM is more like a local learning method due to its

direct optimization for classi�cation and the task-oriented characteristic. How-

ever, because MEMPM only summarizes global information from data (not a

distribution) as well, we still locate it in the framework of global learning.

The proposed MEMPM contains many appealing features. Firstly, it rep-

resents a distribution-free Bayes optimal classi�er in the worst-case scenario.

A perfect balance is achieved by MEMPM in this way: No speci�c model is

assumed on data, since it is distribution-free. At the same time, although in

the worst-case scenario, it is also the Bayes optimal classi�er, which is only

originally applicable in the cases with a known distribution. Another critical

feature of MEMPM is that under a mild condition, it contains an explicit gener-

alization bound. Furthermore, by exploring the bound, the recently-proposed

promising model, Minimax Probability Machine is clearly demonstrated to be

its special case. Importantly, based on specifying a bound for one class of

data, a Biased Minimax Probability Machine is branched out from MEMPM,

which will be shown to provide a rigorous and systematic treatment for biased

classi�cations. We will detail the MEMPM model and BMPM model in the

next chapter.
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2.3 Local Learning

Local learning adopts a largely di�erent way to construct classi�ers. This type

of learning is even more task-oriented than Minimum Error Minimax Prob-

ability Machine and Maximal Conditional learning. In the context of classi-

�cations, only the �nal mapping function from the features z to c is crucial.

Therefore, describing global information from data or explicitly summarizing

a distribution whatever is conditional or joint, is a roundabout or intermediate

step and therefore may be deemed wasteful or imprecise especially when the

global information cannot be estimated accurately.

Alternatively, recent progress has suggested a local learning method, or

well known as the discriminative learning method. The family of approaches

directly pin-points the most critical quantities for classi�cations, while all other

information less irrelevant to this purpose is simply omitted. Compared to

global learning, no model is assumed and also no explicit global information

will be engaged in this scheme. Among this school of methods are Neural

Networks [3, 42, 57, 104, 116, 129], Gabriel Graph methods [6, 73, 164], large

margin classi�ers [30, 137, 139, 141] including Support Vector Machine, a state-

of-the-art classi�er, which achieves superior performance in various pattern

recognition �elds. In the following, we will focus on introducing SVM in details.

2.3.1 Support Vector Machines

Support Vector Machine is established based on minimizing the expected clas-

si�cation risk as de�ned as follows:

R(�) =

Z

z;c

p(z; c)l(z; c;�) ; (2.17)
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Figure 2.3: An illustration of Support Vector Machine

where, l(z; c;�) is the loss function. Similar problems occur as in global learn-

ing, since generally p(z; c) is unknown. Therefore, in practice, the above ex-

pected risk is often approximated by the so-called empirical risk:

Remp(�) =
1

N

NX

j=1

l(zj; cj;�) : (2.18)

The above loss function describes the extent on how close the estimated

class disagrees with the real class for the training data. Various metrics can

be used for de�ning this loss function, including the 0-1 loss and the quadratic

loss [152].

However, considering only the training data may lead to the over-�tting

problem again. In SVM, one big step in dealing with the over-�tting problem

has been made, i.e., the margin between two classes should be pulled away in

order to reduce the over-�tting risk. Figure 2.3 illustrates the idea of SVM.

Two classes of data, depicted as circles and solid dots are presented in this

�gure. Intuitively observed, there are many decision hyperplanes, which can

be adopted for separating these two classes of data. However, the one plotted

in this �gure is selected as the favorable separating plane, because it contains
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the maximum margin between two classes. Therefore, in the objective function

of SVM, a regularization term, representing the margin shows up. Moreover,

as seen in this �gure, only those �lled points, called support vectors, mainly

determine the separating plane, while other points do not contribute to the

margin at all. In another word, only several local points are critical for the

classi�cation purpose in the framework of SVM and thus should be extracted.

Actually, a more formal explanation and theoretical foundation can be

obtained from the Structure Risk Minimization criterion [17, 154]. Therein,

maximizing the margin between di�erent classes of data is minimizing an upper

bound of the expected risk, i.e., the VC dimension bound [154]. However, since

the focus of this thesis does not lie in the theory of SVM, we will not go further

to discuss the details about this. Interested readers can refer to [153, 154].

2.4 Hybrid Learning

Local learning (or simply regarded as SVM) has demonstrated its advantages,

such as its state-of-the-art performance (the lower generalization error), the

optimal and unique solution, and the mathematical tractability. However, it

does discard many useful information from data, e.g., the structure information

from data.

An illustrative example has been seen in Figure 1.4. In the current state-

of-the-art classi�er, i.e., SVM, similar problems also occur. This can be seen

in Figure 2.4. In this �gure, the purpose is to separate two catergories of

data x and y. As observed, the classi�cation boundary is intuitively observed

to be mainly determined by the dotted axis, i.e., the long axis of the y data

(represented by �’s) or the short axis of the x data (represented by �’s).
Moreover, along this axis, the y data are more possible to scatter than the

x data, since y contains a relatively larger variance in this direction. Noting

this \global" fact, a good decision hyperplane seems reasonable to lie closer
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a more reasonable hyperplane

support vectors 
x 

y 

Figure 2.4: A decision hyperplane with considerations of both local and global
information.

to the x side (see the dash-dot line). However, SVM ignores this kind of

\global" information, i.e., the statistical trend of data occurrence: The derived

SVM decision hyperplane (the solid line) lies unbiasedly right in the middle

of two \local" points (the support vectors). The above considerations directly

motivate Maxi-Min Margin Machine.

2.5 Maxi-Min Margin Machine

After examining the road-map of the learning models, especially the global

learning and local learning, we have seen a strong motivation for combining

two di�erent but complementary schemes. More speci�cally, borrowing the

idea from local learning by assuming no distribution on data would set a valid

foundation for the learning models. Meanwhile, fusing robust global informa-

tion, e.g., structure information, into learning models appears to bene�t more

on re�ning decisions in separating data.

Our e�ort will be made in this direction. As will be detailed in Chap-

ter 4, the hybrid learning model, Maxi-Min Margin Machine successfully plugs
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the global information into the learning and enjoys good features from both

local learning and global learning. As seen in Figure 2.1, the Maxi-Min Mar-

gin Machine model has built up various connections with many models in the

literatures; it incorporates Support Vector Machine as a special case, which

lies in the framework of local learning; it also includes Minimax Probabil-

ity Machine and Fisher Discriminant Analysis as direct spin-o�s. Moreover,

a strong link has been established between this model and Minimum Error

Minimax Probability Machine. Moreover, empirical investigations have shown

that this combined model outperforms both local learning model such as SVM

and global learning models, e.g., MPM.

In the next chapter, we will �rst present the Minimum Error Minimax

Probability Machine, which is a general global learning model. Following that,

we then introduce the Maxi-Min Margin Machine and demonstrate its merits

both theoretically and empirically.



Chapter 3

A General Global Learning

Model: MEMPM

Traditional global learning, especially generative learning, enjoys a long and

distinguished history, holding a lot of merits, e.g., a relatively simple optimiza-

tion, and the 
exibility in incorporating global information such as structure

information and invariance etc. However, it is widely argued that this model

lacks the generality for having to assume a speci�c model beforehand. Assum-

ing a speci�c model over data is useful in some cases. However, the assumption

may not always coincide with the true data distribution in general and thus

may be invalid in many circumstances. In this chapter, we propose a novel

global learning model, named Minimum Error Minimax probability Machine

(MEMPM), which is directly motivated from Marshall and OlKin Probability

Theory [101, 121]. For classifying data correctly, this model focuses on es-

timating the worse-case probability, which is not only more reliable, but also

more importantly provides no need for assuming speci�c models. Furthermore,

this new model consists of several appealing features.

First, MEMPM acutally presents a novel general framework for classi�ca-

tions. As demonstrated later, MEMPM includes a recently-proposed promis-

ing model Minimax Probability Machine as its special case, which is reported

32
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to achieve comparable performance to SVM. Interpretations from both view-

points of the optimal thresholding problem and the geometry will be provided

to show the advantages of MEMPM. Moreover, this novel model branches out

another promising special case, named Biased Minimax Probability Machine

(BMPM) [65] and extends its application into a type of important classi�ca-

tions, i.e., biased classi�cations.

Second, this model derives a distribution-free Bayes optimal classi�er in

the worst-case scenario. It thus distinguishes itself from the traditional global

learning methods, or more particularly, the traditional Bayes optimal classi-

�ers, which have to assume a distribution on data and thus lack the generality

in real cases. Furthermore, we will show that, under some conditions, e.g.,

when a Gaussian distribution is assumed on data, the worst-case Bayes opti-

mal classi�er becomes the true Bayes optimal hyperplane.

Third, the MEMPM model contains an explicit performance indicator,

namely an explicit upper bound on the probability of misclassi�cation of fu-

ture data. Moreover, we will demonstrate theoretically and empirically that

MEMPM attains a smaller upper bound of the probability of misclassi�cation

than MPM, which thus implies the advantages of MEMPM over MPM.

Fourth, although in general the optimization of MEMPM is shown to be

a non-concave problem, empirically, it demonstrates a good concavity in the

main \interest" region and thus can be solved practically. Furthermore, we will

show that the �nal optimization problem involves solving a one-dimensional

line search problem and thus results in a satisfactory solving method.

This chapter is organized as follows. In the next section, we will �rst

introduce the Marshall and Olkin Theory. We then present the main content

of this chapter, the MEMPM model, including its de�nition, interpretations,

the practical solving method, and the su�cient conditions for the convergence

into the true Bayes decision hyperplane. Following that, we demonstrate a

robust version of MEMPM. In Section 3.4, we seek to kernelize the MEMPM
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model to attack nonlinear classi�cation problems. We then, in Section 3.5,

present a series of experiments on synthetic data sets and real-world benchmark

data sets. In Section 3.6, we analyze the tightness of the worst-case accuracy

bound. In Section 3.7, we show that empirically MEMPM is often concave

in the main \interest" region. In Section 3.8, we present the limitations of

MEMPM and envision the possible future work. Finally, we summarize this

chapter in Section 3.9. We also develop a Matlab toolbox to build and evaluate

the MEMPM and BMPM classi�ers [161, 160].

3.1 Marshall and Olkin Theory

The Marshall and Olkin Theory can be described as follows:

Theorem 1 [Marshall and Olkin Theory] The probability that a random

vector y belongs to a convex set S can be bounded by the following formulation

sup
y�(y;�y)

Prfy 2 Sg =
1

1 + d2
; with d2 = inf

y2S
(y � y)T��1

y (y � y) ; (3.1)

where the supremum is taken over all distributions for y containing the mean

as y and the covariance matrix as �y. 1

The theory provides us with a possibility to assume no model, but bound

the probability of misclassifying a point and consequently develop a novel

classi�er within the framework of global learning. More speci�cally, one can

design a linear separating plane by replacing S with a half space associated with

this linear plane. To take the supremum can then be considered to bound the

misclassi�cation rate for one class of data. We in the following, �rst introduce

the model de�nition and then show how this theory can be applied therein for

deriving a distribution-free classi�er.

1We assume �y to be positive de�nite for simplicity. Otherwise, we can always add a
small positive amount to its diagonal elements to force its positive de�nition.
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3.2 Minimum Error Minimax Probability De-

cision Hyperplane

In this section, we �rst present the model de�nition of MEMPM while review-

ing the original MPM model. We then in Section 3.2.2 interpret MEMPM

with respect to MPM. In Section 3.2.3, we specialize the MEMPM model for

dealing with biased classi�cations. In Section 3.2.4, we analyze the MEMPM

optimization problem and propose a practical solving method. In Section 3.2.5,

we address the su�cient conditions when the worst-case Bayes optimal classi-

�er derived from MEMPM becomes the true Bayes optimal classi�er. In Sec-

tion 3.2.6, we provide a geometrical interpretation for BMPM and MEMPM.

3.2.1 Problem De�nition

The notation in this chapter will largely follow that of [85]. Let x and y denote

two random vectors representing two classes of data with means and covariance

matrices as fx;�xg and fy;�yg, respectively, in a two-category classi�cation

task, where x, y, x, y 2 Rn, and �x, �y 2 Rn�n.

Assuming fx;�xg, fy;�yg for two classes of data are reliable, MPM at-

tempts to determine the hyperplane wTz = b (w 2 Rnnf0g, z 2 Rn, b 2 R,

and superscript T denotes the transpose) which can separate two classes of

data with the maximal probability. The formulation for the MPM model is

written as follows:

max
�;�;w 6=0;b

�� + (1� �)� s.t. (3.2)

inf
x�(x;�x)

PrfwTx � bg � �; (3.3)

inf
y�(y;�y)

PrfwTy � bg � �: (3.4)

where � and � indicate the worst-case classi�cation accuracies of future
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data points for the class x and y, respectively, namely, the worst-case accu-

racy for classifying x data and y data. Future points z for which wTz � b

are then classi�ed as the class x; otherwise they are judged as the class y.

� 2 [0; 1] is the prior probability of the class x and 1 � � is thus the prior

probability of the class y. Intuitively, maximizing �� + (1 � �)� can be nat-

urally considered as maximizing the expected worst-case accuracy for future

data. In other words, this optimization leads to minimizing the expected upper

bound of the error rate. More precisely, if we change maxf�� + (1 � �)�g to

minf�(1��)+(1��)(1��)g and consider 1�� as the upper bound probabil-

ity that an x data is classi�ed into class y (1� � is similarly considered), the

MEMPM model exactly minimizes the maximum Bayes error and thus derives

the Bayes optimal hyperplane in the worst-case scenario. In comparison, MPM

assumes the equal worst-case probability for both classes, i.e., it forces � = �.

Obvisouly, this is inappropriate since it is unnecessary that the worst-case ac-

curacies are presumed equal. However, even in such a constrained way, MPM

is reported to achieve comparable performacne to SVM, a current state-of-the-

art classi�er. Therefore, the generalized case of MPM, namely, MEMPM may

be expected to be more pomising. This will be empirically demonstrated in

the experimental part of this chapter.

3.2.2 Interpretation

We interpret MEMPM with respect to MPM in this section. First, it is evident

that if we presume � = �, the optimization of MEMPM degrades to the MPM

optimization. This would mean MPM is actually a special case of MEMPM.

An analogy to illustrate the di�erence between MEMPM and MPM can be

seen in the optimal thresholding problem. Figure 3.1 illustrates this analogy.

To separate two classes of one-dimensional data with density functions as p1

and p2, respectively, the optimal thresholding is given by the decision plane
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in Figure 3.1(a) (assuming the prior probabilities for two classes of data are

equal). This optimal thesholding corresponds to the point minimizing the

error rate (1��) + (1��) or maximizing the accuracy �+�, which is exactly

the intersection point of two density functions (1 � � represents the area of

135o-line �lled region and 1 � � represents the area of 45o-line �lled region).

On the other hand, the thresholding point to force � = � is not necessarily

the optimal point to separate these two classes.

�4 �2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

x

1�a 
1�b 

p
1
 

p
2
 

optimal decision plane 

(a)

�4 �2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

x

1�a
1�b 

p
1
 

p
2
 

decision plane when a=b

(b)

Figure 3.1: An analogy to illustrate the di�erence between MEMPM and MPM
with equal prior probabilities for two classes. The optimal decision plane
corresponds to the intersection point, where the error (1 � �) + (1 � �) is
minimized (or the accuracy � + � is maximized) as implied by MEMPM,
rather than the one, where � is equal to � as implied by MPM.

It should be clari�ed that the MEMPM model assumes no distributions.

This distinguishes the MEMPM model from the traditional Bayes optimal

thresholding method, which has to make speci�c assumptions on data distri-

bution. On the other hand, although MEMPM minimizes the upper bound of

the Bayes error rate of future data points, as shown later in Section 3.2.5, it

will represent the true Bayes optimal hyperplane under some conditions, e.g.,

when a Gaussian distribution is assumed on data.2

2Another interpretation of the di�erence between MEMPM and MPM can be stated from
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3.2.3 Special Case for Biased Classi�cations

The above discussion only covers the unbiased classi�cation tasks, which does

not favor one class over the other class intentionally. However, another impor-

tant type of pattern recognition tasks, namely biased classi�cation, arises very

often in practice. In this scenario, one class is usually more important than

the other class. Thus a bias should be imposed towards the important class.

Such typical example can be seen in the diagnosis of epidemical disease. Clas-

sifying a patient who is infected with a disease into an opposite class results in

serious consequence. Thus in this problem, the classi�cation accuracy should

be biased towards the class with disease. In other words, we would prefer to

diagnose the person without the disease to be the infected case rather than

the other way round.

We in the following demonstrate that MEMPM actually contains a special

case we call Biased Minimax Probability Machine for biased classi�cations.

We formulate this special case as:

max
�;�;w 6=0;b

� s.t.

inf
x�(x;�x)

PrfwTx � bg � �;

inf
y�(y;�y)

PrfwTy � bg � �0;

where �0 is a pre-speci�ed positive constant, which represents an acceptable

accuracy level for the less important class y.

The above optimization utilizes a typical setting in biased classi�cations,

the viewpoint of Game Theory. MPM can be regarded as a non-cooperative competitive
game. In this game, each player (class) tries to maximize its individual bene�t, i.e., �. The
competition leads to each class obtaining the same bene�t when all classes ful�ll a kind
of equilibrium. However, in the game theory, many models, e.g., the prisoners’ dilemma,
Counot Model and the tragedy of the commons [108], have stated that maximizing individual
bene�t does not lead to maximizing the global optimum. Our model, on the contrary, can
be considered as a kind of cooperative game. It achieves the global optimum through
cooperation.
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i.e., the accuracy for the important class (associated with x) should be as high

as possible, if only the accuracy for the less important class (associated with

y) maintains at an acceptable level speci�ed by the lower bound �0 (which can

be set by users).

With quantitatively plugging a speci�ed bias �0 into classi�cations and

also containing an explicit accuracy bound � for the important class, BMPM

provides a more direct and elegant way for biased classi�cations. Compar-

atively, to achieve a speci�ed bias, traditional biased classi�ers such as the

Weighted Support Vector Machine [115] and the Weighted k-Nearest Neigh-

bor method [99] usually adapt di�erent costs for di�erent classes. However,

due to the di�culties in building up quantitative connections between the cost

and the accuracy,3 for imposing a speci�ed bias, these methods need resort

to the trial and error procedure to attain suitable costs, which are generally

indirect and lack rigorous treatments.

3.2.4 Solving the MEMPM Optimization Problem

In this section, we will propose to solve the MEMPM optimization problem. As

will be demonstrated shortly, the MEMPM optimization can be transformed

into a one-dimensional line search problem. More speci�cally, the objective

function of the line search problem is implicitly determined by dealing with

a BMPM problem. Therefore, solving the line search problem corresponds to

solving a Sequential Biased Minimax Probability Machine (SBMPM) problem.

Before we proceed, we �rst introduce how to solve the BMPM optimization

problem.

3Although cross validations could be used to provide empirical connections, they are
problem-dependent and are usually slow procedures as well.
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Solving the BMPM Optimization Problem

First, we describe Lemma 2, which is developed in [85].

Lemma 2 Given w 6= 0 and b, such that wTy � b and � 2 [0; 1), the

condition

inf
y�(y;�y)

PrfwTy � bg � �;

holds if and only if b�wTy � �(�)
p

wT�yw with �(�) =
q

�
1�� .

The lemma can be proved according to the Marshall and Olkin Theory and

the Lagrangian Multiplier theory. We provide the detailed proof in Appendix A

of this thesis.

By using Lemma 2, we can transform the BMPM optimization problem as

follows:

max
�;w 6=0;b

� s.t. (3.5)

�b + wTx � �(�)
p

wT�xw ; (3.6)

b�wTy � �(�0)
q

wT�yw ; (3.7)

where �(�) =
p

�
1�� ; �(�0) =

q
�0

1��0
. (3.7) is directly obtained from (3.4) by

using Lemma 2. Similarly, by changing wTx � b to wT (�x) � �b, (3.6) can

be obtained from (3.3).

From (3.6) and (3.7), we get

wTy + �(�0)
q

wT�yw � b � wTx� �(�)
p

wT�xw : (3.8)

If we eliminate b from this inequality, we obtain

wT (x� y) � �(�)
p

wT�xw + �(�0)
q

wT�yw : (3.9)
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We observe that the magnitude of w does not in
uence the solution of (3.9).

Moreover, we can assume x 6= y; otherwise, if x = y, the minimax machine

does not have a physical meaning. In this case, (3.9) may even have no solution

for every �0 6= 0, since the right hand side would be always positive provided

that w 6= 0. Thus in the extreme case, � and � have to be zero, which means

the worst-case misclassi�cation are always zero.

Without loss of generality, we can set wT (x � y) = 1. Thus the problem

can be further changed as

max
�;w 6=0

� s.t. (3.10)

1 � �(�)
p

wT�xw + �(�0)
q

wT�yw ; (3.11)

wT (x� y) = 1: (3.12)

Since �x can be assumed as positive de�nite (otherwise, we can always add

a small positive amount to its diagonal elements and make it positive de�nite),

from (3.11) we can obtain:

�(�) � 1� �(�0)
p

wT�ywp
wT�xw

: (3.13)

Because �(�) increases monotonically with �, maximizing � is equivalent

to maximizing �(�), which further leads to

max
w 6=0

1� �(�0)
p

wT�ywp
wT�xw

s.t. wT (x� y) = 1:

This kind of optimization is called Fractional Programming (FP) problem [68,

100, 134]. To elaborate further, this optimization is equivalent to solving the

following fractional problem:

max
w 6=0

f(w)

g(w)
; (3.14)
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subject to w 2 A = fwjwT (x�y) = 1g, where f(w) = 1��(�0)
p

wT�yw; g(w) =
p

wT�xw.

Theorem 3 The Fractional Programming problem (3.14) associated with the

BMPM optimization is a pseudo-concave problem, whose every local optimum

is the global optimum.

Proof: It is easy to see that the domain A is a convex set on Rn, f(w)

and g(w) are di�erentiable on A. Moreover, since �x and �y can be both

considered as positive de�nite matrices, f(w) is a concave function on A and

g(w) is a convex function on A. Then f(w)
g(w)

is a concave-convex FP problem.

Hence it is a pseudo-concave problem [134]. Therefore, every local maximum

is the global maximum [134].

To handle this speci�c FP problem, many methods such as the parametric

method [134], the dual FP method [29, 133], and the concave FP method [28]

can be used. A typical Conjugate Gradient method [11] in solving this problem

will have a worst-case O(n3) time complexity. Adding the time cost to estimate

x, y, �x, and �y, the total cost for this method is O(n3 + Nn2), where N is

the number of data points. This complexity is in the same order as the linear

Support Vector Machines [138] and the linear MPM [85].

In this chapter, the Rosen gradient projection method [11] is used to �nd

the solution of this pseudo-concave FP problem, which is proved to converge

to a local maximum with a worse-case linear convergence rate. Moreover, the

local maximum will exactly be the global maximum in this problem.
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Sequential BMPM Optimization Method for MEMPM

We now turn to solving the MEMPM problem. Similar to Section 3.2.4, we

can base on Lemma 2 to transform the MEMPM optimization as follows:

max
�;�;w 6=0;b

�� + (1� �)� s.t. (3.15)

�b + wTx � �(�)
p

wT�xw ; (3.16)

b�wTy � �(�)
q

wT�yw : (3.17)

Using the similar analysis as in Section 3.2.4, we can further transform the

above optimization into

max
�;�;w 6=0

�� + (1� �)� s.t. (3.18)

1 � �(�)
p

wT�xw + �(�)
q

wT�yw ; (3.19)

wT (x� y) = 1: (3.20)

In the following we provide a lemma to show that the MEMPM solution

is actually attained on the boundary of the set formed by the constraints of

(3.19) and (3.20).

Lemma 4 The maximum value of ��+(1��)� under the constraints of (3.19)

and (3.20) is achieved when the right hand side of (3.19) is strictly equal to 1.

Proof: Assume the maximum is achieved when 1 > �(�)
p

wT�yw +

�(�)
p

wT�xw. A new solution constructed by increasing � or �(�) with a

small positive amount,4 and maintaining �, w unchanged will satisfy the con-

straints and will be a better solution.

By applying Lemma 4, we can transform the optimization problem (3.18)

4Since �(�) increases monotonically with �, increasing � a small positive amount corre-
sponds to increasing �(�) a small positive amount.
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under the constraints of (3.19) and (3.20) as follows:

max
�;w 6=0

��2(�)

�2(�) + 1
+ (1� �)� s.t. (3.21)

wT (x� y) = 1; (3.22)

where �(�) =
1��(�)

p
wT

P
y wp

wT
P

x w
.

In (3.21), if we �x � to a speci�c value within [0; 1), the optimization is

equivalent to maximizing �2(�)
�2(�)+1

and further equivalent to maximizing �(�),

which is exactly the BMPM problem. We can then update � according to

some rules and repeat the whole process until an optimal � is found. This is

also the so-called line search problem [11, 9]. More precisely, if we denote the

value of optimization as a function f(�), the above procedure corresponds to

�nding an optimal � to maximize f(�). Instead of using an explicit function as

in traditional line search problems, the value of the function here is implicitly

given by a BMPM optimization procedure.

Many methods can be used to solve the line search problem. In this chap-

ter, we use the Quadratic Interpolation (QI) method [11]. As illustrated in

Figure 3.2, QI �nds the maximum point by updating a three-point pattern

(�1; �2; �3) repeatedly. The new � denoted by �new is given by the quadratic

interpolation from the three-point pattern. Then a new three-point pattern

is constructed by �new and two of �1; �2; �3. This method can be shown to

converge superlinearly to a local optimum point [11]. Moreover, as shown in

Section 3.7, although MEMPM generally cannot guarantee its concavity, em-

pirically it is often a concave problem. Thus the local optimum will be often

the global optimum in practice.

Until now, we do not mention how to calculate the intercept b. From

Lemma 4, we can see that the inequalities (3.16) and (3.17) will become equal-

ities at the maximum point (w�; b�). The optimal b will thus be obtained
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f(b) 

b
1
 b

2
 b

new b
3
 

Figure 3.2: A three-point pattern and Quadratic Line search method. A �new
is obtained and a new three-point pattern is constructed by �new and two of
�1, �2 and �3.

by

b� = wT
� x� �(��)

p
wT
��xa� = wT

� y + �(��)
q

wT
��ya� : (3.23)

3.2.5 When the Worst-case Bayes Optimal Hyperplane

Becomes the True One?

As discussed, the MEMPM derives the worst-case Bayes optimal hyperplane,

thus it is interesting to dig out on what conditions the worst-case optimal one

changes into the true optimal one.

In the following we demonstrate two propositions: the �rst is that when

data are assumed under some distributions, e.g., Gaussian distribution, the

MEMPM leads to the Bayes optimal classi�er; the second is that when applied

into high-dimensional classi�cation tasks, the MEMPM can be adapted to
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converge into the true Bayes optimal classi�er under the Lyapunov condition.

To introduce the �rst proposition, we begin with assuming data distribution

as a Gaussian distribution.

Assuming x � N (x;�x) and y � N (y;�y), (3.3) becomes:

inf
x�N (x;�x)

PrfwTx � bg = Prx�N (x;�x)fwTx � bg

= PrfN (0; 1) � b�wTxp
wT�xw

g

= 1� �(
b�wTxp
wT�xw

)

= �(
�b + wTxp

wT�xw
) � �; (3.24)

where �(z) is the cumulative distribution function for the standard normal

Gaussian distribution as de�ned as:

�(z) = PrfN (0; 1) � zg =
1p
2�

Z z

�1
exp(�s2=2)ds:

Due to the monotonic property of �(z), we can further write (3.24) as:

�b + wTx � ��1(�)
p

wT�xw :

Constraint (3.4) can be reformulated to a similar form. The optimization (3.2)

is thus changed as:

max
�;�;w 6=0;b

�� + (1� �)�; s.t.

�b + wTx � ��1(�)
p

wT�xw ; (3.25)

b�wTy � ��1(�)
q

wT�yw : (3.26)

The above optimization is nearly the same as (3.2) subject to the constraints

of (3.3) and (3.4) except that, �(�) is equal to ��1(�), instead of
p

�
1�� . Thus,
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it can be similarly solved based on the Sequential Biased Minimax Probability

Machine method.

On the other hand, the Bayes optimal hyperplane corresponds to the one,

wTz = b, which minimizes the Bayes error:

min
w 6=0;b

�Prx�N (x;�x)fwTx � bg+ (1� �)Pry�N (y;�y)fwTy � bg: (3.27)

The above is exactly the upper bound of �� + (1 � �)�. From Lemma 4, we

can know (3.25) and (3.26) will eventually become equalities. Traced back

to (3.24), the equalities imply that � and � will achieve their upper bounds

respectively. Therefore, with the Gaussian distribution assumption on data,

the MEMPM derives the optimal Bayes hyperplane.

We propose Proposition 5 to extend the above analysis to general distribu-

tion assumptions.

Proposition 5 If the distribution of the normalized random variable wT x�wTxp
wT�xw

,

denoted as NS, is independent of w, as the case in Gaussian distribution, the

similar MEMPM version as in Gaussian distribution assumption will be eas-

ily derived, except that �(z) is changed as PrfNS(0; 1) � zg. In such case,

minimizing the Bayes error bound will exactly minimize the true Bayes error.

Before presenting Proposition 7, we �rst introduce the Central Limit The-

orem under the Lyapunov condition [25].

Theorem 6 Let xn be a sequence of independent random variables de�ned

on the same probability space. Assume that xn has �nite expected value �n

and �nite standard deviation �n. We de�ne s2
n =

Pn
i=1 �

2
i . Assume that the

third central moment r3
n =

Pn
i=1 E(jxn � �nj3) are �nite for every n, and that

limn!1
rn
sn

= 0 (This is the Lyapunov condition). The sum Sn = x1 + ::: + xn

converges towards a Gaussian distribution.
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One interesting �nding directly elicited from the above Central Limit The-

orem is that, if the component variable xi of a given n-dimensional random

variable x satis�es the Lyapunov condition, the sum of weighted component

variables xi, 1 � i � n, namely, wTx tends to be a Gaussian distribution, as

n grows.5 This shows that, under the Lyapunov condition, when the dimen-

sion n grows, the hyperplane derived by MEMPM with Gaussian assumption

tends to be the true Bayes optimal hyperplane. In this case, the MEMPM us-

ing ��1(�) the inverse function of the normal cumulative distribution, instead

of
p

�
1�� , will converge to the true Bayes optimal decision hyperplane in the

high-dimensional space. We summarize the analysis into Proposition 7.

Proposition 7 If the component variable xi of a given n-dimensional random

variable x satis�es the Lyapunov condition, the MEMPM hyperplane derived

by using ��1(�), the inverse function of normal cumulative distribution, will

converge to the true Bayes optimal one.

The underlying justi�cations in the above two propositions root in the fact

that the generalized MPM is exclusively determined by the �rst and second

moments. These two propositions actually emphasize the dominance of the

�rst and second moments in representing data. More speci�cally, Proposition 5

hints that the distribution is only decided by up to the second moments. The

Lyapunov condition in Proposition 7 also implies that the second order moment

dominates the third order moment in the long run. It also deserves attentions

that with the �xed mean and covariance, the distribution of Maximum Entropy

Estimation is the Gaussian distribution [75]. This would once again suggest

the usage of ��1(�) in the high-dimensional space.

5Some techniques such as Independent Component Analysis [32] can be applied to decor-
relate the dependence among random variables beforehand.
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3.2.6 Geometrical Interpretation

In this section, we �rst provide a parametric solving method for BMPM. We

then demonstrate that this parametric method actually enables a nice geomet-

rical interpretation for both BMPM and MEMPM.

A Parametric Method for BMPM

According to the parametric method, the fractional function can be iteratively

optimized in two steps [134]:

Step 1. Find w by maximizing f(w)� �g(w) in the domain A, where � 2 R
is the newly introduced parameter.

Step 2. Update � by f(w)
g(w)

.

The iteration of the above two steps will guarantee to converge to the local

maximum, which is also the global maximum in our problem. In the following,

we adopt a method to solve the maximization problem in Step 1. Replacing

f(w) and g(w), we expand the optimization problem as:

max
w 6=0

1� �(�0)
q

wT�yw � �
p

wT�xw s.t. wT (x� y) = 1: (3.28)

Maximizing (3.28) is equivalent to minw �(�0)
p

wT�yw + �
p

wT�xw under

the same constraint. By writing w = w0 +Fu, where w0 = (x�y)= k x�y k2
2

and F 2 Rn�(n�1) is an orthogonal matrix whose columns span the subspace

of vectors orthogonal to x� y, an equivalent form (a factor 1
2

over each term

has been dropped) to remove the constraint can be obtained:

min
u;�>0;�>0

� +
�2

�
k�x

1=2(w0 + Fu)k2
2 + � +

�(�0)2

�
k�y

1=2(w0 + Fu)k2
2 ; (3.29)
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where �; � 2 R. This optimization form is very similar to the one in Minimax

Probability Machine [84] and can also be solved by using an iterative least-

squares approach.

A Geometrical Interpretation for BMPM and MEMPM

The parametric method actually enables a nice geometrical interpretation of

BMPM and MEMPM in a fashion similar to that of MPM in [85]. Similarly,

we assume x 6= y for the meaningful classi�cation and assume that �x and �y

are positive de�nite for the purpose of simplicity.

By using the 2-norm de�nition of a vector z : kzk2 = maxfuTz : kuk2 � 1g,
we can express (3.28) as its dual form:

�� := min
w 6=0

max
u;v

�uT�x
1=2w + �(�0)vT�y

1=2w + �(1�wT (x� y))

s:t: kuk2 � 1; kvk2 � 1 :

We change the order of the min and max operators and consider the min:

min
w 6=0

�uT�x
1=2w + �(�0)vT�y

1=2w + �(1�wT (x� y))

=

8
<
:

� if �x� ��x
1=2u = �y + �(�0)�y

1=2v

�1 otherwise

Thus, the dual problem can be further changed as:

max
�;u;v

� : kuk2 � 1; kvk2 � 1; �x� ��x
1=2u = �y + �(�0)�y

1=2v : (3.30)

By de�ning ‘ := 1=� , we rewrite the dual problem as:

min
‘;u;v

‘ : x� ��x
1=2u = y + �(�0)�y

1=2v; kuk2 � ‘; kvk2 � ‘ : (3.31)
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Figure 3.3: The Geometrical interpretation of MEMPM and BMPM. Finding
the optimal BMPM hyperplane corresponds to �nding the decision plane (the
black dashed line) tangent to an ellipsoid (the inner red dashed ellipsoid on
the y side) , which is centered at y, shaped by the covariance �y and whose
Mahalanobis distance to y is exactly equal to �(�0) (�(�0) = 1:28 in this
example). The worst-case accuracy � for x is determined by the Mahalanobis
distance � (� = 5:35 in this example), at which, an ellipsoid (centered at x
and shaped by �x) is tangent to that �(�0) ellipsoid, i.e., the outer red dahsed
ellipsoid on the x side. In comparison, MPM tries to �nd out the minimum
equality-constrained �, at which two ellipsoids for x and y intersect (both
dotted red ellipsoids with � = 2:77). For MEMPM, it achieves a tangent
hyperplane in a non-balanced fashion, i.e., two ellipsoids may not attain the
same � but is globally optimal in the worst-case setting (see the solid blue
ellipsoids).

When the optimum is attained, we have

�� = �k�x
1=2w�k2 + �(�0)k�y

1=2w�k2 = 1=‘� : (3.32)

We consider each side of (3.31) as an ellipsoid centered at the mean x and y

and shaped by the weighted covariance matrices ��x and �(�0)�y respectively:

Hx(‘) = fx = x + ��x
1=2u : kuk2 � ‘g; (3.33)

Hy(‘) = fy = y + �(�0)�y
1=2v : kvk2 � ‘g (3.34)
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The above optimization involves �nding a minimum ‘ for which two ellip-

soids intersect. For the optimum ‘, these two ellipsoids would be tangent to

each other. We further note that, according to Lemma 4, at the optimum, ��,

which is maximized via a series of the above procedures, would satisfy

1 = ��k�x
1=2w�k2 + �(�0)k�y

1=2w�k2 = �� = 1=‘� (3.35)

) ‘� = 1 : (3.36)

This means that the ellipsoid for the class y �nally changes to the one

centered at y, whose Mahalanobis distance to y is exactly equal to �(�0).

Moreover, the ellipsoid for the class x would be the one centered at x and tan-

gent to the ellipsoid for the class y. In comparison, for MPM, two ellipsoids

grow with the same speed (with the same �(�) and �(�)). On the other hand,

since MEMPM corresponds to solving a sequence of BMPMs, it similarly leads

to a hyperplane tangent to two ellipsoids, which achieves to minimize the max-

imum of the worst-case Bayes error. Moreover, it is not necessarily attained

in a balanced way as in MPM, i.e., two ellipsoids do not necessarily grow with

the same speed and hence probably contain the unequal Mahalanobis distance

from their corresponding centers. This is illustrated in Figure 3.3.

3.3 Robust Version

In the above, the estimates of means and covariance matrices are assumed

reliable. We now consider how the probabilistic framework in (3.2) changes

against the variation of the means and covariance matrices:

max
�;�;w 6=0;b

�� + (1� �)� s.t. (3.37)

inf
x�(�x;�x)

PrfwTx � bg � �; 8(�x;�x) 2 X ; (3.38)

inf
y�(�y;�y)

PrfwTy � bg � �; 8(�y;�y) 2 Y ; (3.39)
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where X and Y are the sets of means and covariance matrices and are the

subsets of R�P+
n , where P+

n is the set of n�n symmetric positive semidefinite

matrices.

Motivated by the tractability of the problem and from the statistical view,

a specific setting of X and Y is proposed in [85]. However, they consider the

same variations of the means for two classes, which is easy to handle but less

general. Now, considering the unequal treatment of each class, we propose the

following setting, which is in a more general and complete form:

X =
�

(�x;�x) j (�x� �x0)� �1
x (�x� �x0) � �2

x; �x 2 k�x � � 0
x kF � �x

	
;

Y =
�

(�y;�y) j (�y� �y0)� �1
y (�y� �y0) � �2

y; �y 2 k�y � � 0
y kF � �y

	
;

where �x0, �0
x are the \nominal" means and covariance matrices obtained

through estimating. Parameters �x, �y, �x, and �y are positive constants. The

matrix norm is de�ned as the Frobenius norm: kMk2
F = Tr(MTM).

With the assumption that variations of the means for two classes are the

same, the parameters �x and �y are required equal in [85]. This may enable the

direct usage of the MPM optimization into its robust version. However, the

assumption may not be true in real cases. Moreover, in MEMPM, this require-

ment is also not necessary and inappropriate. This will be later demonstrated

in the experiment.

By applying the results from [85], we obtain the robust MEMPM as:

max
�;�;w 6=0;b

�� + (1� �)� s.t.

�b + wT �x0 � (�(�) + �x)
p

wT (� 0
x + �xIn)w;

b�wT �y0 � (�(�) + �y)
q

wT (� 0
y + �yIn)w:
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Analogously, we transform the above optimization problem as:

max
�;�;w 6=0

�
�2
r(�)

1 + �2
r(�)

+ (1� �)� s.t. wT (�x0 � �y0) = 1; (3.40)

where �r(�) = max

�
1�(�(�)+�y)

p
wT (� 0

y +�yIn)wp
wT (� 0

x +�xIn)w
� �x; 0

�
and thus can be solved

by the SBMPM method. The optimal b is therefore calculated by

b� = a�
T �x0 � (�(��) + �x)

p
a�T (� 0

x + �xIn)a�

= a�
T �y0 + (�(��) + �y)

q
a�T (� 0

y + �yIn)a�:

Remarks. Interestingly, if MPM is treated with unequal robust parame-

ters �x and �y, it leads to solving an optimization similar to MEMPM, since

�(�) + �x will not be equal to �(�) + �y. In addition, similar to the robust

MPM, when applied in practice, the speci�c values of �x, �y, �x, and �y can

be provided based on the Central Limit Theorem.

3.4 Kernelization

We note that, in the above, the classi�er derived from MEMPM is given in

a linear con�guration. In order to handle nonlinear classi�cation problems,

in this section, we seek to use the kernelization trick [109] to map the n-

dimensional data points into a high-dimensional feature space Rf , where a

linear classi�er corresponds to a nonlinear hyperplane in the original space.

Since the optimization of MEMPM corresponds to a sequence of BMPM

optimization problems, this model naturally inherits the kernelization ability of

BMPM. We thus in the following mainly address the kernelization of BMPM.

Assuming training data points are represented by fxigNx
i=1 and fyjgNy

j=1 for
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the class x and y, respectively, the kernel mapping can be formulated as:

x! ’(x) � (’(x);�’(x));

y! ’(y) � (’(y);�’(y));

where ’ : Rn ! Rf is a mapping function. The corresponding linear clas-

si�er in Rf is wT’(z) = b, where w, ’(z) 2 Rf , and b 2 R. Similarly, the

transformed FP optimization in BMPM can be written as:

max
w

1� �(�0)
p

wT�’(y)wp
wT�’(x)w

s.t. wT (’(x)� ’(y)) = 1: (3.41)

However, to make the kernel work, we need to represent the �nal decision

hyperplane and the optimization into a kernel form, K(z1; z2) = ’(z1)T’(z2),

namely an inner product form of the mapping data points.

3.4.1 Kernelization Theory for BMPM

In the following, we demonstrate that, although BMPM possesses a signi�-

cantly di�erent optimization form from MPM, the kernelization theory pro-

posed in [85] is still viable, provided that suitable estimates for means and

covariance matrices are applied therein.

We �rst state a theory similar to Corollary 5 of [85] and prove its validity

in BMPM.

Corollary 8 If the estimates of means and covariance matrices are given in
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BMPM as

’(x) =
NxX

i=1

�i’(xi); ’(y) =

NyX

j=1

!j’(yj) ;

�’(x) = �xIn +
NxX

i=1

�i(’(xi)� ’(x))(’(xi)� ’(x))T ;

�’(y) = �yIn +

NyX

j=1


j(’(yj)� ’(y))(’(yj)� ’(y))T ;

where In is the identity matrix of dimension n, then the optimal w in problem

(3.41) lies in the space spanned by the training points.

Proof: Similar to [85], we write w = wp+wv, where wp is the projection

of w in the vector space spanned by all the training data points and wv is the

orthogonal component to this span space. It can be easily veri�ed that (3.41)

changes to maximize the following:

1� �(�0)
q

wT
p

PNx

i=1 �i(’(xi)� ’(x))(’(xi)� ’(x))Twp + �x(wT
p wp + wT

d wd)q
wT
p

PNy

j=1 
j(’(yj)� ’(y))(’(yj)� ’(y))Twp + �y(wT
p wp + wT

d wd)

subject to the constraints of wT
p (’(x)�’(y)) = 1. Since we intend to maximize

the fractional form and both the denominator and the numerator are positive,

the denominator needs to be as small as possible and the numerator needs to

be as large as possible. This would �nally lead to wd = 0. In other words,

the optimal w lies in the vector space spanned by all the training data points.

Note that the introduction of �x and �y actually enables a direct application

of the robust estimates into the kernelization.

According to Corollary 8, if appropriate estimates of means and covariance

matrices are applied, the optimal w can be written as the linear combination of

training points. In particular, if we obtain the means and covariance matrices
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as the plug-in estimates, i.e.,

’(x) =
1

Nx

NxX

i=1

’(xi) ;

’(y) =
1

Ny

NyX

j=1

’(yj) ;

�’(x) =
1

Nx

NxX

i=1

(’(xi)� ’(x))(’(xi)� ’(x))T ;

�’(y) =
1

Ny

NyX

j=1

(’(yj)� ’(y))(’(yj)� ’(y))T ;

we can write w as

w =
NxX

i=1

�i’(xi) +

NyX

j=1

�j’(yj); (3.42)

where the coe�cients �i, �j 2 R for i = 1; : : : ; Nx and j = 1; : : : ; Ny.

By simply substituting (3.42) and four plug-in estimates into (3.41), we

can obtain the Kernelization Theorem of BMPM.

3.4.2 Notations in Kernelization Theorem of BMPM

Before we present the main kernelization result, we �rst introduce the nota-

tions. Let fzgNi=1 denote all N = Nx + Ny data points in the training set

where

zi = xi i = 1; 2; : : : ; Nx ;

zi = yi�Nx i = Nx + 1; Nx + 2; : : : ; N:

The element of the Gram matrix K in the position of (i; j) is de�ned as

Ki;j = ’(zi)
T’(zj) for i; j = 1; 2; : : : ; N . We further de�ne Kx and Ky as the
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matrices formed by the �rst Nx rows and the last Ny rows of K, respectively,

namely,

K :=

0
@ Kx

Ky

1
A :

By setting the row average of the Kx block and the Kx block to zero, the

block-row-averaged Gram matrix ~K is thus obtained:

K :=

0
@

~Kx

~Ky

1
A =

0
@ Kx � 1Nx

~kTx

Ky � 1Ny
~kTy

1
A ;

where ~kx; ~ky 2 RNx+Ny are de�ned as:

[~kx]i :=
1

Nx

NxX

j=1

K(xj; zi) ;

[~ky]i :=
1

Ny

NyX

j=1

K(yj; zi) :

In the above, 1Nx 2 RNx and 1Ny 2 RNy , which are de�ned as:

1i = 1; i = 1; 2; : : :Nx ;

1j = 1; j = 1; 2; : : :Ny :

Finally, we de�ne vector formed by the coe�cients of 
 as

w = [�1; �2; : : : ; �Nx; �1; �2; : : : ; �Ny ]T : (3.43)

3.4.3 Kernelization Results

Theorem 9 [Kernelization Theorem of BMPM] The optimal decision

hyperplane of the problem (3.41) involves solving the Fractional Programming
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problem

�(��) = max
w 6=0

1� �(�0)
q

1
Ny

wT ~KT
y

~Kyw
q

1
Nx

wT ~KT
x

~Kxw
s.t. wT (~kx � ~ky) = 1 :

The intercept b is calculated as

b� = wT
� ~kx � �(��)

r
1

Nx
wT
� ~KT

x
~Kxw� = wT

� ~ky + �(�0)

s
1

Ny
wT
� ~KT

y
~Kyw� ;

where �(��) is obtained when (3.44) attains its optimum (w�; b�). For the

robust version of BMPM, we can incorporate the variations of the means and

covariances by conducting the following replacements:

1

Nx
wT
� ~KT

x
~Kxw� ! wT

� (
1

Nx

~KT
x

~Kx + �xK)w� ;

1

Ny
wT
� ~KT

y
~Kyw� ! wT

� (
1

Ny

~KT
y

~Ky + �yK)w� ;

�(�0)! �(�0) + �y ;

�(��)! �(��) + �x :

The optimal decision hyperplane can be represented as a linear form in the

kernel space

f(z) =
NxX

i=1

w�iK(z;xi) +

NyX

i=1

w�Nx+iK(z;yi)� b�:

3.5 Experiments

In this section, we �rst evaluate our model on a synthetic dataset. Then we

compare the performance of MEMPM with that of MPM, on six real-world

benchmark data sets (since MPM is reported comparable to SVM, we do not

perform comparisons with SVM. To demonstrate BMPM is ideal for imposing
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a speci�ed bias in classi�cation, we also implement it on the Heart-disease

dataset. The means and covariance matrices for two classes are obtained di-

rectly from the training data sets by plug-in estimations. The prior probability

� is given by the proportion of x data in the training dataset.

3.5.1 Model Illustration on a Synthetic Dataset

To verify that the MEMPM model achieves the minimum Bayes error rate

in the Gaussian distribution, we synthetically generate two classes of two-

dimensional Gaussian data. As plotted in Figure 3.4(a), data associated with

the class x are generated with the mean x as [3; 0]T and the covariance matrix

�x as [4; 0; 0; 1], while data associated with the class y are generated with the

mean y as [�1; 0]T and the covariance matrix �y as [1; 0; 0; 5]. The solved

decision hyperplane Z1 = 0:333 given by MPM is plotted as the solid blue line

and the solved decision hyperplane Z1 = 0:660 given by MEMPM is plotted

as the dashed red line. From the geometrical interpretation, both hyperplanes

should be perpendicular to the Z1 axis.

As shown in Figure 3.4(b), the MEMPM hyperplane exactly represents

the optimal thresholding under the distributions of the �rst dimension for two

classes of data, i.e., the intersection point of two density functions. On the

other hand, we �nd that, the MPM hyperplane exactly corresponds to the

thresholding point with the same error rate for two classes of data, since the

cumulative distribution Px(Z1 < 0:333) and Py(Z1 > 0:333) are exactly the

same.

3.5.2 Evaluations on Benchmark Data Sets

We next evaluate our algorithm on six benchmark data sets. Data for the

Twonorm problem were generated according to [16]. The rest �ve data sets
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including the Breast, Ionosphere, Pima, Heart-disease, and Vote data were ob-

tained from UCI machine learning repository [12]. Since handling the missing

attribute values is out of the scope of this chapter, we simply remove instances

with missing attribute values in these data sets.

We randomly partition data into 90% training and 10% test sets. The �-

nal results are averaged over 50 random partitions of data. We compare the

performance of MEMPM and MPM in both the linear setting and Gaussian

kernel setting. The width parameter (�) for the Gaussian kernel is obtained

via cross validations over 50 random partitions of the training set. The exper-

imental results are summarized in Table 3.1 and Table 3.2 for the linear kernel

and Guassian kernel respectively.

From the results, we can see that, our MEMPM demonstrates better per-

formance than MPM in both the linear and Gaussian kernel setting. Moreover,

as observed in these benchmark datasets, the MEMPM hyperplanes are ob-

tained with signi�cantly unequal � and � except in the Twonorm set. This

further con�rms the validity of our proposition, i.e., the optimal minimax ma-

chine is not certain to achieve the same worst-case accuracies for two classes.

For the Twonorm, it is also not an exception. The two classes of data in this

set are generated under the multivariate normal distributions with the same

covariance matrices. In this special case, the intersection point of two density

functions will exactly represent the optimal thresholding point and the one

with the same error rate for each class as well. Another important �nding is

that, the accuracy bounds, namely ��+ (1� �)� in MEMPM and � in MPM

are all increased in the Gaussian kernel setting when compared with those

in the linear setting. This shows the advantage of the kernelized probability

machine over the linear probability machine.

In addition, to clearly see the relationship between the bounds and the

test set accuracies (TSA), we plot them in Figure 3.5. As observed, the test

set accuracies including TSAx (for the class x), TSAy (for the class y), and
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the overall accuracies TSA are all greater than their corresponding accuracy

bounds both in MPM and MEMPM. This demonstrates how the accuracy

bound can serve as the performance indicator on future data. It is also observed

that the overall worst-case accuracies ��+(1��)� in MEMPM are greater than

� in MPM both in the linear and Gaussian setting. This again demonstrates

the advantages of MEMPM over MPM.

Dataset MEMPM MPM
� � ��+ (1� �)� Accuracy � Accuracy

Twonorm(%) 80:3 � 0:2% 79:9� 0:1% 80:1� 0:1% 97:9� 0:1% 80:1 � 0:1% 97:9� 0:1%
Breast(%) 77:8 � 0:8% 91:4� 0:5% 86:7� 0:5% 96:9� 0:3% 84:4 � 0:5% 97:0� 0:2%

Ionosphere(%) 95:9 � 1:2% 36:5� 2:6% 74:5� 0:8% 88:5� 1:0% 63:4 � 1:1% 84:8� 0:8%
Pima(%) 0:9� 0:0% 62:9� 1:1% 41:3� 0:8% 76:8� 0:6% 32:0 � 0:8% 76:1� 0:6%

Heart-disease(%) 43:6 � 2:5% 66:5� 1:5% 56:3� 1:4% 84:2� 0:7% 54:9 � 1:4% 83:2� 0:8%
Vote(%) 82:6 � 1:3% 84:6� 0:7% 83:9� 0:9% 94:9� 0:4% 83:8 � 0:9% 94:8� 0:4%

Table 3.1: Lower bound �, �, and test accuracy compared to MPM in the
linear setting.

Dataset MEMPM MPM
� � ��+ (1� �)� Accuracy � Accuracy

Twonorm(%) 91:7 � 0:2% 91:7� 0:2% 91:7� 0:2% 97:9� 0:1% 91:7 � 0:2% 97:9� 0:1%
Breast(%) 88:4 � 0:6% 90:7� 0:4% 89:9� 0:4% 96:9� 0:2% 89:9 � 0:4% 96:9� 0:3%

Ionosphere(%) 94:2 � 0:8% 80:9� 3:0% 89:4� 0:8% 93:8� 0:4% 89:0 � 0:8% 92:2� 0:4%
Pima(%) 2:6� 0:1% 62:3� 1:6% 41:4� 1:1% 77:0� 0:7% 32:1 � 1:0% 76:2� 0:6%

Heart-disease(%) 47:1 � 2:2% 66:6� 1:4% 58:0� 1:5% 83:9� 0:9% 57:4 � 1:6% 83:1� 1:0%
Vote(%) 85:1 � 1:3% 84:3� 0:7% 84:7� 0:8% 94:7� 0:5% 84:4 � 0:8% 94:6� 0:4%

Table 3.2: Lower bound �, �, and test accuracy compared to MPM with the
Gaussian kernel.

Since the lower bounds keep well with the test accuracies in the above

experimental results, we do not perform the robust version of both models for

the real-world data sets. To see how the robust version works, we generate two

classes of Gaussian data. As illustrated in Figure 3.6, the x data are sampled

from the Gaussian distribution with the mean as [3; 0]T and the covariance as

[1 0; 0 3], while the y data are sampled from another Gaussian distribution

with the mean as [�3; 0]T and the covariance as [3 0; 0 1]. We randomly select

10 points of each class for training and leave the rest points for test from the

above synthetic dataset. We present the result in the following.
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First, we calculate the corresponding means, �x0 and �y0, covariance matri-

ces, � 0
x and � 0

y and plug them into the linear MPM and the linear MEMPM.

We obtain the MPM decision line (magenta dotted line) with a lower bound

(assuming the Gaussian distribution) being 99:1% and the MEMPM decision

line (black dash-dot line) with a lower bound as 99:7% respectively. However,

for the test set, we only obtain the accuracies 93:0% for MPM and 97:0% for

MEMPM, (see Figure 3.6(a)). This obviously violates the lower bound.

Based on our knowledge of the real means and covariance matrices in this

example, we set the parameters as

�x =
p

(�x� �x0)T� �1
x (�x� �x0) = 0:046;

�y =

q
(�y � �y0)T� �1

y (�y � �y0) = 0:496;

�x = k�x � � 0
x kF = 1:561;

�y = k�y � � 0
y kF = 0:972;

� = max(�x; �y);

We then train the robust linear MPM and the robust linear MEMPM by

these parameters and obtain the robust MPM decision line (red dashed line),

the robust MEMPM decision line (blue solid line), as seen in Figure 3.6(a). The

lower bounds decrease to 87:3% for MPM and 93:2% for MEMPM respectively,

but the test accuracies increase to 98:0% for MPM and 100:0% for MEMPM.

Obviously, the lower bounds accord with the test accuracies.

Note that in the above, the robust MEMPM also achieves a better per-

formance than the robust MPM. Moreover, �x and �y are not necessarily the

same. To see the result of MEMPM when �x and �y are forced to be the same,

we train the robust MEMPM again by setting the parameters as �x = �y = �

as used in MPM. We obtain the corresponding decision line (black dash-dot

line) as seen in Figure 3.6(b). The lower bound decreases to 91:0% and the

test accuracy decreases to 98:0%. The above example indicates how the robust
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MEMPM clearly improves over the standard MEMPM when a bias is incorpo-

rated by the inaccurate plug-in estimates and also validates that �x need not

be equal to �y.

3.5.3 Evaluations of BMPM on Heart-disease Dataset

To demonstrate the advantages of the BMPM model in dealing with biased

classi�cations, we implement BMPM on the Heart-disease dataset, where dif-

ferent treatments for di�erent classes are necessary. The x class is associated

with data with heart diseases, whereas the y class corresponds to data without

heart diseases. Obviously, a bias should be considered for x, since misclassi-

�cation of an x case into the opposite class would delay the therapy and is

more risky than the other way round. Similarly, we randomly partition data

into 90% training and 10% test sets. Also, the width parameter (�) for the

Gaussian kernel is obtained via cross validations over 50 random partitions

of the training set. We repeat the above procedures 50 times and report the

average results.

By intentionally varying �0 from 0 to 1, we obtain a series of test accuracies,

including the x accuracy, TSAx, the y accuracy TSAy for both the linear and

Gaussian kernel. For simplicity, we denote the x accuracy in the linear setting

as TSAx(L), while others are similarly de�ned.

The results are summarized in Figure 3.5. Four observations are worth

highlighting. First, in both linear and Gaussian kernel settings, the smaller

�0, the higher the test accuracy for x. This indicates a bias can be indeed

embedded in the classi�cation boundary for the important class x by specifying

a relatively smaller �0. In comparison, MPM forces an equal treatment on

each class and thus is not suitable for biased classi�cation. Second, the test

accuracies for y and x are strictly lower bounded by �0 and �. This shows

how a bias can be quantitatively, directly, and rigorously imposed towards the
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important class x. Note that again, for other weight-adapting based biased

classi�ers, the weights themselves lack accurate interpretations and thus cannot

rigorously impose a speci�ed bias, i.e., they would try for di�erent weights for

a speci�ed bias. Third, when given a prescribed �0, the test accuracy for x

and its worst-case accuracy � in the Gaussian kernel setting are both increased

compared to the corresponding accuracies in the linear setting. Once again,

this demonstrates the power of the kernelization. Fourth, we note that �0

actually contains an upper bound, which is around 90% for the linear BMPM

in this dataset. This is reasonable. Observed from (3.11), the maximum �0,

denoted as �0m, is decided by setting � = 0, i.e.,

�(�0m) = max
w 6=0

1p
wT�yw

s.t. wT (x� y) = 1: (3.44)

It is interesting noting that when �0 is set to zero, the test accuracies for y

in the linear and Gaussian settings are both around 50% (see Figure 3.7(b)).

This seeming \irrationality" is actually reasonable. We will discuss this in the

next section.

3.6 How Tight Is the Bound?

A natural question for MEMPM is, how tight is the worst-case bound? In this

section, we present a theoretical analysis in addressing this problem.

In Marshall and Olkin Theory, if we de�ne S = fwTy � bg, the theorem

is changed to:

sup
y�fy;�yg

PrfwTy � bg =
1

1 + d2
; with d2 = inf

wT y�b
(y � y)T��1

y (y� y) :

Looking into the above equation and (3.4), for a given hyperplane fw; bg,
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we can easily obtain

� =
d2

1 + d2
: (3.45)

Moreover, in [85], a simple closed-form expression for the minimum distance

d is derived:

d2 = inf
wTy�b

(y� y)T�y
�1(y� y) =

max((b�wTy); 0)

wT�yw
: (3.46)

It is easy to see that when the decision hyperplane (w; b) passes the center

y, d would be equal to 0 and the worst-case accuracy � would be 0 according

to (3.45).

However, if we consider the Gaussian data (which we assume as y data)

in Figure 3.9(a), a vertical line approximating y would achieve about 50%

test accuracy. The large gap between the worst-case accuracy and the real

test accuracy seems strange. In the following, we construct an example of

one-dimensional data to show the inner rationality of this observation. We

attempt to provide the worst-case distribution containing the given mean and

covariance, while a hyperplane passing its mean achieves a real test accuracy

of zero.

Consider one-dimensional data y consist of N � 1 observations with values

as m and one single observation with the value as �
p
N + m. If we calculate

the mean and the covariance, we obtain:

y = m +
�p
N
;

�y =
N � 1

N
�2 :

When N goes to in�nity, the above one-dimensional data have the mean as m

and the covariance as �. In this extreme case, a hyperplane passing the mean
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will achieve a zero test accuracy, which is exactly the worst-case accuracy

given the �xed mean and covariance as m and � respectively. This example

demonstrates the inner rationality of the minimax probability machines.

To further examine the tightness of the worst-case bound in Figure 3.9(a),

we vary � from 0 to 1 and plot against � the real test accuracy that a ver-

tical line classi�es the y data by using (3.45). Note that the real accuracy

can be calculated as �(z � d). This curve is plotted in Figure 3.8. Observed

from Figure 3.8, the smaller the worst-case accuracy, the looser it is. On the

other hand, if we skew the y data towards the left side, while simultaneously

maintaining the mean and covariance unchanged (see Figure 3.9(b)), even a

bigger gap will be generated when � is small; analogically, if we skew the

data towards the right side (see Figure 3.9(c)), a tighter accuracy bound will

be expected. This �nding would mean that only adopting up to the second

order moments may not achieve a satisfactory bound. In other words, for a

tighter bound, higher order moments such as skewness may need to be con-

sidered. This problem of estimating a probability bound based on moments is

presented as the (n; k;
)-bound problem, which means \�nding the tightest

bound for n-dimensional variable in the set 
 based on up to the k-th mo-

ments." Unfortunately, as proved in [121], it is NP-hard for (n; k;Rn)-bound

problems with k � 3. Thus tightening the bound by simply scaling up the

moment order may be intractable in this sense. We may have to exploit other

statistical techniques to achieve this goal. Certainly, this deserves a closer

examination in the future.

3.7 On the Concavity of MEMPM

We address the issue of the concavity on the MEMPM model in this section.

We will demonstrate that, although MEMPM cannot generally guarantee its

concavity, there is strong empirical evidence showing that many real-world
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problems demonstrates reasonable concavity in MEMPM. Hence, the MEMPM

model can be solved successfully by standard optimization methods, e.g., the

linear search method proposed in this chapter.

We �rst present a lemma on BMPM.

Lemma 10 The optimal solution for BMPM is a strictly and monotonically

decreasing function with respect to �0.

Proof: Let the corresponding optimal worst-case accuracies on x be �1

and �2 respectively, when �01 and �02 are set as the acceptable accuracy levels

for y in BMPM. We will prove that if �01 > �02, then �1 < �2.

This can be proved by considering the contrary case, i.e., we assume �1 �
�2. From the problem de�nition of BMPM, we have:

�1 � �2 =) �(�1) � �(�2)

=) 1� �(�01)
p

a1
T�ya1p

a1
T�xa1

� 1� �(�02)
p

a2
T�ya2p

a2
T�xa2

; (3.47)

where, w1 and w2 are the corresponding optimal solutions which maximize

�(�1) and �(�2) respectively, when �01 and �02 are speci�ed.

From �01 > �02 and (3.47), we have

1� �(�02)
p

a1
T�ya1p

a1
T�xa1

>
1� �(�01)

p
a1

T�ya1p
a1

T�xa1

(3.48)

� 1� �(�02)
p

a2
T�ya2p

a2
T�xa2

: (3.49)

On the other hand, since w2 is the optimal solution of maxw
1��(�02)

p
wT�ywp

wT�xw
,

we have:

1� �(�02)
p

a2
T�ya2p

a2
T�xa2

� 1� �(�02)
p

a1
T�ya1p

a1
T�xa1

:

This is obviously contradictory to (3.49).



Chapter 3 A General Global Learning Model: MEMPM 69

From the sequential solving method of MEMPM, we know that MEMPM

actually corresponds to a one-dimensional line search problem. More speci�-

cally, it further corresponds to maximizing the sum of two functions, namely,

f1(�) + f2(�),6 where f1(�) is determined by the BMPM optimization and

f2(�) = �. According to Lemma 10, f1(�) strictly decreases as � increases.

Thus it is strictly pseudo-concave. However, generally speaking, the sum of

a pseudo-concave function and a linear function is not necessarily a pseudo-

concave function and thus cannot assure that every local optimum is the global

optimum. This can be clearly observed in Figure 3.10. In this �gure, f1 is

pseudo-concave in three sub-�gures; however, the sum f1 + f2 does not neces-

sarily lead to a pseudo-concave function.

Nevertheless, there is strong empirical evidence showing that for many

\well-behaved" real world classi�cation problems, f1 is overall concave, which

results in the concavity of f1 + f2. This is �rst veri�ed by the data sets used

in this chapter. We shift � from 0 to the corresponding upper bound and plot

out � against � in Figure 3.11. It is clearly observed that in all six data sets

including both kernel and linear cases, the curves of � against � are overall

concave. This motivates us to look further into the concavity of MEMPM.

As shown in the following, when two classes of data are \well-separated," f1

would be concave in the main \interest" region.

We analyze the concavity of f1(�) by imagining that � changes from 0 to

1. In this process, the decision hyperplane moves slowly from y to x according

to (3.45) and (3.46). At the same time, � = f1(�) should decrease accord-

ingly. More precisely, if we denote dx and dy respectively as the Mahalanobis

distances that x and y are from the associated decision hyperplane with a

6For simplicity, we assume � as 0:5. Since a constant does not in
uence the concavity
analysis, the factor of 0:5 is simply dropped.
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speci�ed �, we can formulate the changing of � and � as:

�! �� k1(dx)�dx;

� ! � + k2(dy)�dy;

where k1(dx) and k2(dy) can be considered as the changing rate of � and �

when the hyperplane lies dx distance far away from x and dy distance far away

from y respectively. We consider the changing of � against �, namely, f 01:

f 01 =
�k1(dx)�dx

k2(dy)�dy
:

If we consider dx and �dy insensitively change against each other or change

with a proportional rate, i.e., �dx � c�dy (c is a positive constant) as the

decision hyperplane moves, the above equation can be further written as

f 01 = c
�k1(dx)

k2(dy)
:

Lemma 11 (1) If dy � 1=
p

3 or the corresponding � � 0:25, k2(dy) decreases

as dy increases.

(2) If dx � 1=
p

3 or the corresponding � � 0:25, k1(dx) decreases as dx in-

creases.

Proof: Since (1) and (2) are actually very similar statements, we only

prove (1). k2(d) is actually the �rst order derivative of d2

1+d2 according to

(3.45). We consider the �rst order derivative of k2(d) or the second order

derivative of d2

1+d2 . It is easily veri�ed that ( d2

1+d2 )00 � 0 when d � 1=
p

3.

This is also illustrated in Figure 3.13. According to the de�nition of the

second derivative, we immediately obtain the lemma. Note that d � 1=
p

3

corresponds to � � 0:25. Thus the condition can be also replaced by � � 0:25.
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In the above procedure, dy, � increase and dx, � decrease, as the hyperplane

moves towards x. Therefore, according to Lemma 11, k1(dx) increases while

k2(dy) decreases when �; � 2 [0:25; 1). This shows that f 01 is getting smaller

as the hyperplane moves towards x. In other words, f 001 would be less than 0

and thus is concave when �; � 2 [0:25; 1). It should be noted that in many

well-separated real world data sets, the optimal � and � will be greater than

0:25 with a high possibility, since to achieve good performance, the worst-case

accuracies are naturally required to be greater than a smaller amount, e.g.,

0:25. This is observed in the data sets used in the chapter. All the data sets

except Pima attain their optimums satisfying this constraint. For Pima, the

overall accuracy is relatively lower, which implies two classes of data in this

dataset appear to largely overlap with each other.7

An illustration can be also seen in Figure 3.12. We generate two classes

of Gaussian data with x = [0; 0]T , y = [L; 0]T , and �x = �y = [1; 0; 0; 1].

The prior probability for each data is set as an equal value 0:5. We plot the

curves of f1(�) and f1(�) + � when L is set as di�erent values. It is observed

that when two classes of data largely overlap with each other, for example in

Figure 3.12(a) with L = 1, the optimal solution of MEMPM lies in the small-

value range of � and �, which is usually not concave. On the other hand, (b),

(c), and (d) show that when two classes of data are well-separated, the optimal

solutions lie in the region with �; � 2 [0:25; 1), which is often concave.

Note that, in the above, we make an assumption that as the decision hy-

perplane moves, dx and dy change at an approximately �xed proportional rate.

From the de�nition of dx and dy, this assumption implies that w, the direction

of the optimal decision hyperplane, is insensitive to �. This assumption does

not hold in all cases; however, observed from the geometrical interpretation of

7It is observed, even for Pima, the proposed solving algorithm is still successful, since �
is approximately linear as shown in Figure 3.11. Moreover, due to the fact that the slope of
� is slightly greater than �1, the �nal optimum naturally leads � achieves its maximum.
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MEMPM, for those data with isotropic or not signi�cantly anisotropic �x and

�y, w would be indeed insensitive to �.

We summarize the above analysis into the following proposition.

Proposition 12 Assuming (1) two classes of data are well-separated and (2)

dx and dy change at an approximately �xed proportional rate as the optimal

decision hyperplane (associated with a speci�ed �) moves, the one-dimensional

line search problem of MEMPM is often concave in the range of �; � 2 [0:25; 1)

and will often attain its optimum in this range. Therefore the proposed solving

method leads to a satisfactory solution.

Remarks. As demonstrated in the above, although the MEMPM is often

overall concave in real world tasks, there exist cases that the MEMPM opti-

mization problem is not concave. This may lead to the case that the solved

local optimum, based on the SBMPM method, is not the global optimum. In

these instances, we may need carefully choose the initial starting point. In ad-

dition, the physical interpretation of � as the worst-case accuracy, may make

it relatively easy to choose a suitable initial value. For example, we can set the

initial value by using the information obtained from prior domain knowledge.

3.8 Limitations and Future Work

In this section, we present the limitations and future work.

First, although MEMPM achieves better performance to MPM, its se-

quential optimization of Biased Minimax Probability Machine may cost more

training time than MPM. In our experiments, the MEMPM needs to solve

5-15 BMPM optimizations on the average. Supposing that BMPM is solved

based on Conjugate Gradient Methods (with a worst-case time complexity in

the same order as MPM), the MEMPM would be 5-15 times as expensive as

MPM. Although in pattern recognition tasks, especially in o�-line classi�ca-

tions, e�ectiveness is often more important than e�ciency, expensive time-cost
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presents one of the main limitations of the MEMPM model, in particular for

large scale data sets with millions of samples. To solve this problem, one pos-

sible direction is to reduce those redundant points, which actually make less

contributions to the classi�cation. In this way, the problem dimension (in the

kernelization) would be greatly decreased and therefore may help in reduc-

ing the computational time required. Another possible direction is to exploit

some techniques to decompose the Gram matrix (as is done in SVM) and to

develop some specialized optimization procedures for MEMPM. Undoubtedly,

speeding up the algorithm will be a highly worthy topic in the future.

Second, as a generalized model, MEMPM actually incorporates some other

variations. For example, when the prior probability (�) cannot be estimated

reliably (e.g., in sparse data), maximizing � + �, namely the sum of the ac-

curacies or the di�erence between true positive and false positive, would be

considered . This type of approaches is widely used in pattern recognition

�eld, e.g., in medical diagnosis [52] and in graph detection, especially line de-

tection and arc detection, where it is called Vector Recovery Index [35, 93] .

Moreover, when there are domain experts at hand, a variation of MEMPM,

namely, the maximization of Cx� + Cy� may be used, where Cx (Cy) is the

cost of a misclassi�cation of x (y) obtained from experts. Exploring these

variations in some speci�c domains is thus a valuable direction in the future

(we actually will discuss these variations as criteria for biased or imbalanced

learning in Chapter 5).

Third, [85] has built up a connection between MPM and SVM from the

perspective of the margin de�nition, i.e., MPM corresponds to �nding the

hyperplane with the maximal margin from the class center. Nevertheless,

some deeper connections need to be investigated, e.g., how is the bound of the

MEMPM related to the generation bound of SVM? More recently, [64] and

also the next chapter have disclosed the relationship between them from either

a local or global viewpoint of data. It is particularly useful to look into these
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links and explore their further connections in the future.

3.9 Summary

In this chapter, we have proposed a novel global learning model, named Min-

imum Error Minimax Probability Machine. By minimizing the upper bound

of the Bayes error of future data points, our model derives the distribution-

free Bayes optimal hyperplane in the worst-case setting. This thus distinguish

itself from the traditional global learning approaches or more particular from

traditional Bayes optimal classsifers. More importantly, we have shown that,

the worst-case Bayes optimal hyperplane derived by MEMPM becomes the

true Bayes optimal hyperplane, when some conditions are satis�ed, e.g., when

a Gaussian distribution is assumed on data. We have shown how to exploit

Mercer kernels in this setting to derived a nonlinear classi�cation boundary.

We also have demonstrated that how a robust framework can be introduced to

make solid the foundation of the proposed model. Moreover, we have demon-

strated that this novel model permits an explicit accuracy bound on future

data theoretically and validate this proposition empirically as well. We have

evaluated our algorithms on both synthetic data sets and real-world bench-

mark data sets. The performance of MEMPM is demonstrated to outperform

MPM, a comparable model with SVM.
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Figure 3.4: An evaluation of MEMPM and MPM on a synthetic dataset.
The decision hyperplane derived from MEMPM (the dashed red line) exactly
corresponds to the optimal threshholding point, i.e., the intersection point,
while the decision hyperplane given by MPM (the solid blue line) corresponds
to the point in which, two error rates for two classes of data are equal.
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Figure 3.5: Empirical evaluations on bounds and test set accuracies of
MEMPM. The test accuracies including TSAx (for the class x), TSAy (for
the class y), and the overall accuracies TSA are all greater than their cor-
responding accuracy bounds both in MPM and MEMPM. This demonstrates
how the accuracy bound can serve as the performance indicator on future data.
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Figure 3.6: An example in R2 demonstrates the results of robust versions of
MEMPM and MPM. Training points are indicated with black +’s for the class
x and magenta �’s for class y. Test points are represented by blue �’s for class
x and by green o’s for the class y. In (a), the robust MEMPM outperforms
both MEMPM and the robust MPM. In (b), the robust MEMPM with �x 6= �y

outperforms the robust MEMPM with �x = �y.
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Figure 3.7: Bounds and real accuracies for BMPM in Heart-disease data set.
With �0 varying from 0 to 1, the real accuracies are lower bounded by the
worst-case accuracies. In addition, �(G) is above �(L), which shows the power
of the kernelization.
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Figure 3.8: Theoretical comparison between the worst-case accuracy and the
real test accuracy for the Gaussian data in Figure 3.9(a).
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Figure 3.9: Three two-dimensional data with the same means and covariances
but with di�erent skewness. The worst-case accuracy bound of (a) is tighter
than that of (b) and looser than that of (c).



Chapter 3 A General Global Learning Model: MEMPM 80

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

b

f
1
+f

2
 

f
2
 

f
1
 

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

b

f
1
+f

2
 

f
2
 

f
1
 

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

b

f
1
+f

2
 

f
2
 

f
1
 

(c)

Figure 3.10: The sum of a pseudo-concave function and a linear function is not
necessarily a concave function. In (a), f1 + f2 is a concave function, however
in (b) and (c) it is not.
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Figure 3.11: The curves of � against � (f1) are all concave-like in the data sets
used in this chapter.
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Figure 3.12: An illustration of the concavity of the MEMPM. Sub�gure (a)
shows that when two classes of data overlap largely with each other, the op-
timal solution of MEMPM lies in the small-value range of � and �, which is
usually not concave. (b), (c), and (d) show that when two classes of data are
well-separated, the optimal solutions lie in the region with �; � 2 [0:25; 1),
which is often concave.
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Chapter 4

Learning locally and Globally:

Maxi-Min Margin Machine

The proposed MEMPM model obtains the decision hyperplane by using only

global information, e.g., the mean and covariance matrices. However, although

these moments can be more reliably obtained than estimating the distribution,

they may still be inaccurate in many cases, e.g., when the data are very sparse.

Recently, local learning methods, especially large margin classi�ers [141]

have attracted much interest in the community of machine learning and pattern

recognition. Support Vector Machine (SVM) [154], the most famous one of

them, represents a state-of-the-art classi�er. The essential point of SVM is to

�nd a linear separating hyperplane, which achieves the maximal margin among

di�erent classes of data. Furthermore, one can extend SVM to build nonlinear

separating decision hyperplanes by exploiting kernelization techniques.

These methods do not try to summarize any global information before-

hand, but to focus on obtaining the decision hyperplane in a \local" way. For

example, in SVM, the decision boundary is exclusively determined by some

critical points, which are called support vectors, whereas all other points are

totally irrelevant to this hyperplane. Although this scheme is both theoret-

ically and empirically demonstrated to be powerful, it actually discards the

global information of data.

84
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SVM
a more reasonable hyperplane

support vectors 
x 

y 

Figure 4.1: A decision hyperplane with considerations of both local and global
information.

An illustration example can be seen in Figure 4.1. In this �gure, the classi�-

cation boundary is intuitively observed to be mainly determined by the dotted

axis, i.e., the long axis of the y data (represented by �’s) or the short axis of

the x data (represented by �’s). Moreover, along this axis, the y data are more

possible to scatter than the x data, since y contains a relatively larger variance

in this direction. Noting this \global" fact, a good decision hyperplane seems

reasonable to lie closer to the x side (see the dash-dot line). However, SVM

ignores this kind of \global" information, i.e., the statistical trend of data oc-

currence: the derived SVM decision hyperplane (the solid line) lies unbiasedly

right in the middle of two \local" points (the support vectors).1

Aiming to construct classi�ers both locally and globally, we propose the

Maxi-Min Margin Machine (M4) in this chapter. We will attempt to combine

into the local learning the global information, i.e., the covariance information,

which can represent the data trend. Moreover, as this model also contains the

properties of local learning, it will naturally neutralize the impact when the

global information is inaccurate.

As we show later, one critical contribution of this novel model is that

1This �gure has appeared earlierin Chapter 2. However, for the purpose of self-containing
for each chapter, we still present it here.




