
FINAL VERSION 1

Isocube: Exploiting the Cubemap Hardware
Liang Wan† Tien-Tsin Wong† Chi-Sing Leung‡

lwan@cse.cuhk.edu.hk ttwong@acm.org eeleungc@cityu.edu.hk

†The Chinese University of Hong Kong
‡City University of Hong Kong

Abstract— This paper proposes a novel six-face spherical map,
isocube, that fully utilizes the cubemap hardware built in most
GPUs. Unlike the cubemap, the proposed isocube uniformly
samples the unit sphere (uniformly distributed) and all samples
span the same solid angle (equally important). Its mapping
computation contains only a small overhead. By feeding the
cubemap hardware with the six-face isocube map, the isocube can
exploit all built-in texturing operators tailored for the cubemap
and achieve a very high frame rate. In addition, we develop
an anisotropic filtering that compensates aliasing artifacts due
to texture magnification. This filtering technique extends the
existing hardware anisotropic filtering and can be applied to,
not just the proposed isocube, but also other texture mapping
applications.

Index Terms— Isocube, Sampling on sphere, Cubemap, Equal
solid-angle, Anisotropic filtering.

I. INTRODUCTION

ENvironment mapping is a cost-effective way to raise
visual richness and photorealism [1]. Millions of look-

up operations may be required in rendering a frame. Hence
the environment mapping functionality is normally hardwired
in most GPUs. Most implementations adopt the six-face
cubemap, due to its computational simplicity and memory-
friendly rectilinear structure. However, the cubemap samples
the spherical environment unevenly, more at the face corners
while less at the face centers. Furthermore, each texel spans
different solid angle (i.e. not equally important). Other com-
mon representations, the sphere map and the dual-paraboloid
map [2], also do not sample the environment evenly.

Although there exist representations [3][4] that evenly
sample the unit sphere (environment) and has the property
of uniform solid-angle (all texels are equally important),
their corresponding texture look-up processes require tailored
shader implementations and they are not able to fully exploit
the existing hardware. Unless they can exploit the hardware
cubemap operators such as texture lookup and antialiasing
operations, the speed performance of their shader implementa-
tions is rather low compared to that of the hardware cubemap.
This motivates us to design a novel spherical representation
that fits nicely into the six-face structure, so as to pretend
itself to be a cubemap and exploit those operators originally
designed for the six-face cubemap.

The proposed spherical representation is called, isocube,
to indicate its properties of equal solid-angle and uniform
sampling (low discrepancy). It is inspired by the twelve-
face spherical representation, HEALPix [4], originated from

astrophysics. Since it samples the environment uniformly
and equally, the bias is minimized. From our experiments,
its rendering quality is also slightly better than that of the
cubemap. The isocube has a rather low computational cost.
Furthermore, it can exploit the hardware cubemap operators
and, hence, it achieves a very high frame rate.

In addition, we propose an anisotropic filtering that compen-
sates the reconstruction aliasing due to texture magnification.
The goal is to enforce filtering along the major edges in order
to reduce the aliasing artifacts. This filter depends on both the
texture gradient and the distance to the viewpoint. It exploits
the existing hardware functionality and can be applied to, not
just the isocube, but also other texture mapping.

In Section II, we first review common spherical parameter-
izations used in computer graphics. Section III describes the
proposed isocube and the application of isocube environment
mapping. Section IV discusses our anisotropic filtering for tex-
ture magnification. Implementation and results are presented
in Section V. Section VI concludes our work.

II. RELATED WORK

The cubemap is one of the most commonly used param-
eterizations of environment maps [1][5][6][7]. It represents
the environment by a six-face cube, while each cube face
is a perspective image as viewed from the cube center. The
cubemap lookup process is extremely fast due to its efficient
computation. While the cubemap is composed of six perspec-
tive images, effort has been made to design the tetrahedron
map that requires only four perspective images [8][9]. A
tetrahedron map requires less projections than a cubemap.
However, its lookup process is more complex than that of
a cubemap, since tetrahedron faces are triangular and not
orthogonal to each other. Representing the sphere with eight
perspective images, the octahedron map unfolds the sphere
into a square other than the cross-structure of a cubemap [10].
Like the cubemap, the tetrahedron map or the octahedron map
do not sample the environment evenly.

Another common parameterization is the sphere map [11],
which resembles a mirror ball positioned in the environment.
Fetching a texel from a sphere map is efficiently done by
projective texture lookups. The sphere map however severely
undersamples the environment near the sphere boundary.
Because of the dependence on the viewing direction, the
sphere map has to be updated whenever the viewing direction
changes. The dual paraboloid map [2] extends the sphere map

FINAL VERSION 2

so as to be independent of the viewing direction. Instead of a
mirror ball, a paraboloid surface is adopted as the reflection
object. The image seen by the orthographic camera that looks
at the paraboloid comprises one hemisphere. As a result, a
dual paraboloid map consists of two separate textures, one for
each hemisphere.

Just like the dual paraboloid map tries to improve the
sampling uniformity of the sphere map while maintaining the
computational efficiency, the proposed isocube enhances the
cubemap to make it equal solid-angle and uniformly sampled
while achieving a very high frame rate.

III. ISOCUBE MAPPING

A. Constructing the Isocube Mapping

The proposed isocube is inspired by an allsky image parti-
tioning scheme, Hierarchical Equal Area isoLatitude Pixelisa-
tion (HEALPix) [4][12]. The HEALPix starts by partitioning
the spherical surface into 12 equal-area base quads, and
recursively subdivides each quad to generate smaller sub-
quads of equal area. The associated sampling pattern of this
partitioning is found to be uniform (low discrepancy) on the
sphere [12]. Figure 1 shows the HEALPix map by unrolling
and concatenating the 12 base quads. Each base quad in
this example is subdivided into 4 × 4 elements. Given a
HEALPix map, the lookup and antialiasing operations have
to be implemented with tailored shaders. Hence the speed
performance is rather low. This motivates us to design a
novel spherical representation so as to fully exploit the built-in
cubemap hardware while maintaining the properties of equal
solid angle and sampling uniformity.

Fig. 1. The unrolled view of the HEALPix map

Initially we tried to pack the pixels of the HEALPix map
into the six-face cube structure. Regions with the same color
are packed into one cube face as suggested by the colors
in Figure 1. However, a close inspection reveals that those
pixels are not in a grid structure. Instead, we design a new
set of partitioning equations on the sphere. This equation
set partitions the spherical surface into 6 equal-area base
faces instead of 12. Recursive subdivision generates smaller
elements while maintaining the equal solid-angle property. As
the resultant partition forms a six-face structure (cube) and all
elements are the same in size (iso), we call the partitioning
scheme as isocube.

Figure 2 illustrates the construction process of isocube base
faces. We first partition the spherical surface into the equatorial
zone and two polar zones with arctic/antarctic circles at |z| =
2/3 (Figure 2(a)). The area of the equatorial zone is four
times that of each polar zone. The equatorial zone is further

Z

Z=2/3

Z=-2/3
Y

x

(a) (b)

Fig. 2. Constructing isocube base faces: (a) the sphere is first partitioned into
three zones, the equatorial zone in the middle, and two polar zones besides;
(b) then the sphere is partitioned into six equal area base faces.

(a) N = 2 (b) N = 4 (c) N = 8
Fig. 3. Further partition one equatorial base face at resolutions (a) N = 2,
(b) N = 4, and (c) N = 8.

subdivided into four symmetric equal regions. The resultant
six base faces, as shown in Figure 2(b), have the same area
(Appendix A).

Next we partition each base face into N × N elements.
Denote φ as the azimuth angle, and θ as the polar angle while
z = cos θ. Within the equatorial zone, we develop a set of
k-curves and l-curves,

k-curves: φ =
π

2
(

k

N
− 1

2
), k = 0, . . . , 4N (1)

l-curves: z =
2
3

(
2l

N
− 1). l = 0, . . . , N (2)

Figure 3 shows the partitions at three resolutions on one
equatorial base face, with k-curves indicated in blue color and
l-curves in magenta color.

In the polar zones, we adopt a different set of partitioning
equations. Due to the symmetry within the polar base faces,
we only present the subdivision equations within the region
where (φ, z) ∈ [0, π

4] × [23 , 1],

k-curves:

φ =
π

2
2k + ε

2N
· 1√

3(1 − z)
, k = 0, . . . ,

⌊
N

2

⌋
− 1 (3)

l-curves:

z = 1 − 1
3

(
2l + ε

N

)2

, l = 0, . . . ,

⌊
N

2

⌋
(4)

where ε = N mod 2. As shown in Figure 4, k-curves and
l-curves in the polar base faces are not as regular as those in
the equatorial zone, and may form corners. Figure 4(d) may
remind careful readers the elevated concentric map [3]. Unlike
the elevated concentric map which covers a hemisphere, our
polar faces only span the arctic/antarctic regions.

The two sets of partitioning curves (for the equatorial and
polar zones) guarantee the equal solid-angle property in the
generated partition. Readers are referred to Appendix A for the

FINAL VERSION 3

C
u

b
e

m
a

p
Is

o
c
u

b
e

(a) sampling pattern (b) unrolled view (c) environment map

Fig. 5. (a) compares the associated sampling patterns of the cubemap and isocube. (b) shows how the cubemap is distorted on the isocube map. Basically,
the straight lines in the cubemap may become curves in the isocube. (c) show the same environment in both maps (environment map courtesy of Tomáš
Feltl).

(a) N = 2 (b) N = 4 (c) N = 8 (d) N = 8

Fig. 4. Partition the region where (φ, z) ∈ [0, π
4

] × [2
3
, 1] at three

resolutions (a) N = 2, (b) N = 4, and (c) N = 8. (d) shows the complete
partition on the polar base face with N=8.

detail mathematical proof. Since the isocube composes of six
faces with each face containing the same amount of samples,
it fits naturally in the classical cubemap structure.

We now compare the sampling uniformity of the isocube
to that of the cubemap. Suppose that one sample is posi-
tioned at the center of each element. The left column in
Figure 5 shows the sampling patterns of the cubemap and
isocube respectively. At the same face resolution, the isocube
distributes samples evenly on the sphere, while the cubemap
places more samples at the face corners. The uniformities of
the two sampling patterns are quantitatively measured using
the generalized discrepancy metric [13]. The discrepancy of
the isocube is much lower (more uniformly distributed) than
that of the cubemap. The detailed discrepancy analysis among
the isocube, cubemap, HEALPix and other common spherical
mappings can be found in Appendix B.

The middle column in Figure 5 visualizes how the cubemap
(upper) is distorted on the isocube by mapping the cubemap
subdivision lines onto the isocube map (lower). The central
regions of the cube faces are stretched on the isocube map,
while the corner regions get suppressed. Consequently, the
isocube places samples more evenly on the sphere than that

of cubemap.
The trade-off and drawback of isocube is the anisotropic

distortion of the partitioned cells, especially in the polar
regions. As evidenced in Figure 4, the rectangular texels (in
texture domain) at the corners of isocube polar faces are
mapped to triangular cells on the spherical surface. Such
distortion may cause aliasing especially when the texture is
magnified. In Section IV, an anisotropic filtering is proposed
to attenuate such artifact.

B. Isocube Environment Mapping

As the isocube fits nicely into the six-face cube structure,
it can be naturally loaded into the cubemap hardware. To
further exploit the cubemap hardware, we need to convert
the reflection vector R = [x, y, z]T to the texture look-up
vector Q = [s, t, q]T that satisfies the requirements of the
hardware cubemap operations. With Q, the isocube can “steal”
the hardware cubemap operators such as the texture look-up
and anti-aliasing operations.

To map R → Q, we introduce an intermediate index I
for the isocube map and decompose the mapping into two
successive steps conceptually. The first step computes the
index I of the pixel (in the isocube map) in which the reflection
vector R = [x, y, z]T points to. The second step converts the
index I to the texture look-up vector Q = [s, t, q]T fed to the
hardware cubemap operations, that is

[x, y, z]T → I → [s, t, q]T. (5)

The notation I refers to an indexing scheme of samples
on the isocube. It composes of a tuple [c, o]T. As shown in

FINAL VERSION 4

Figure 6, the samples on the isocube map form a set of rings
(indicated as dashed circles) parallel to the equator. We define
c to be the index of the ring, where the current pixel lies on,
counting from the north pole. We then define o as the index
of the pixel counting from the sample located at/near to φ = 0
on the ring c, where [θ, φ]T are spherical coordinates of R.
Given a reflection vector R, [c, o]T can be computed efficiently
according to Equations (1) - (4).

C O

Fig. 6. Indexing the samples on the isocube.

We further extend the index I to the homogeneous form
I = [c, o, 1]T. The mapping I → Q can be written in the
matrix form, ⎡

⎣ s
t
q

⎤
⎦ = A

⎡
⎣ c

o
1

⎤
⎦ , (6)

where

A =

⎡
⎣ a11 a12 0

a21 0 a23

a31 a32 0

⎤
⎦ . (7)

The values of elements in A are listed in Table I. The
experimental results (refer to Figure 9 in Section V) show
that the isocube map samples the environment more evenly.

TABLE I

VALUES OF ELEMENTS IN A

a11 a12 a31 a32

φ ∈ [0, 1
2
π) 1 0 0 2

φ ∈ [1
2
π, π) 2 -2 1 0

φ ∈ [π, 3
2
π) -1 0 4 -2

φ ∈ [3
2
π, 2π) -6 2 -1 0

a21 a23

z ∈ (2
3
, 1] 0 1

z ∈ [− 2
3
, 2

3
] -1 1

z ∈ [−1,− 2
3

) 0 -1

IV. ANISOTROPIC FILTERING FOR TEXTURE

MAGNIFICATION

Although the isocube samples the environment more evenly
than the cubemap, the isocube-based environment mapping,
like other texture mapping techniques [14], also suffers from
aliasing problems. Figure 7 shows such an example. The
aliasing problems appear when the texture is over-minified or
over-magnified, as shown in Figures 7(b) and (d), which are
rendered by simple bilinear interpolation. There are several
anti-aliasing techniques proposed to counteract the aliasing
due to texture minification [15], [16], [17], [18], [19]. Among
them, mip-mapping [20] or anisotropic filtering are usually
realized on graphics hardwares due to their computational

efficiency. Figure 7(c) shows the anti-aliased result using
hardware anisotropic filtering. On the other hand, although
effort has been made to counteract artifacts due to texture
magnification [21], [22], [23], [24], existing techniques are sel-
dom hardware-friendly except [25]. No customized hardware
features are available to counteract this kind of aliasing. Note
that hardware anisotropic filtering has only a minimal effect
on jaggy edges caused by texture magnification (Figure 7(e)).
In this paper, we propose an efficient and hardware-friendly
filtering technique for counteracting the aliasing due to texture
magnification.

As the artifacts are usually more apparent at the edge areas
than at the non-edge areas (as evidenced by Figures 7(d) and
(e)). The artifacts occur as the result of naively magnifying the
rectilinear pixels, without considering the actual content in the
texture. Intuitively speaking, we smooth (“smear”) the pixels
along a dominant direction so as to attenuate the objectionable
visual artifacts. In particular, we take the edge direction as the
dominant direction (Figure 8). Considering a texel p in the
edge region, an elliptical filter with the major axis aligned with
the edge direction is constructed to control the filtering. The
proposed “smearing” method is efficient and hardware-friendly
by naturally extending the usage of hardware anisotropic
filtering.

p

Fig. 8. Anisotropic filtering for texture magnification. The elliptical filter is
enforced to align with the edge direction.

Let us start by the case of 2D texture mapping. Suppose
G is the normalized gradient vector at the texel p. The edge
direction E can be approximated by the vector [−G.y, G.x]T
which is perpendicular to the gradient vector. In Cg shading
language [26], the command to perform non-projective texture
lookup with derivatives is,

tex2D(sampler2D tex,
float2 p,float2 dpdx,float2 dpdy),

where tex is a 2D texture map, p is the texture coordinate,
and the derivatives dpdx and dpdy determine an anisotropic
filtering footprint. We then define a footprint along the edge
direction E, that is

tex2D(sampler2D tex,
float2 p,float2 ∆x,float2 0),

where,

∆x = ξ ·
[−G.y,

G.x

]
.

The parameter ξ controls how large the footprint spans. It
is related to the distance to the viewpoint. When the object
comes close to the viewpoint, a large footprint is expected to
compensate more severe aliasing artifacts due to a large texture
magnification ratio. Rather than computing the distance, we
use level-of-detail [11], and define ξ as,

ξ = a · λb, (8)

FINAL VERSION 5

(a)

(b) (c)

(d) (e)

Fig. 7. Aliasing artifacts due to texture minification (the right upper row) and in magnification (the right bottom row): (b) and (d) rendered by simple bilinear
interpolation; (a), (c) and (e) are rendered with bilinear interpolation, mipmapping and hardware anisotropic filtering enabled.

where
λ = −log2(max(|dpdx|, |dpdy|)). (9)

a and b are two user-defined parameters. Parameter a has a
positive value. The larger a is, the more blurry the rendered
image will be. Parameter b suppresses or stretches the range
of λ.

The proposed anisotropic filtering does not limit to 2D
texture mapping. We now describe the steps on how to apply
it to the isocube environment mapping:

1) Compute the gradient fields of the isocube environment
map.

2) Bilinearly interpolate the gradients during run-time.
3) Compute the derivative vector ∆x for the texture lookup

vector Q.
4) Look-up the environment map by

texCUBE(samplerCUBE tex,
float3 Q,float3 ∆x,float3 0).

Note that texCUBE requires a 3D derivative vector. We have
to convert the 2D edge direction E to an appropriate 3D
derivative vector ∆x. For instance, if the lookup vector Q
points to the positive-x or negative-x isocube face, we compute
∆x as,

∆x = ξ · (−G.y, 0, sign(Q.x) G.x).

The similar conversions hold for other lookup vectors. Readers
are referred to the experimental results in Figure 12 in the next
section.

Since both texture magnification and minification may hap-
pen in the same image and our anisotropic filtering only works
for magnification, we selectively perform the proposed filter-
ing in our shader only when texture magnification is detected.
The detection is based on the LOD value. If texture minifica-
tion is detected instead, the shader utilizes the hardware anti-
aliasing functionality by explicitly calling texCUBE(tex, Q)
in the shader. Obviously, this shader implementation of anti-
aliasing has an overhead in comparing to fully automatic
hardware anti-aliasing.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we first evaluate the proposed isocube-based
environment mapping, then validate the extended anisotropic
filtering. Finally, we demonstrate a dynamic reflection approx-
imation using the isocube.

A. Isocube vs. Cubemap

To evaluate the proposed isocube, we first visually compare
it with the classical cubemap. The isocube maps and cubemaps
used in the experiments have the same resolution of 128 ×
128 × 6. We generate both of them by resampling a high-
resolution environment cubemap (768 × 768 × 6). Figure 9
compares the rendering results (512 × 512) of the isocube
and cubemap environment mapping. The blow-ups in Figures
9(b)-(e) demonstrate that the isocube samples the environment
more balanced than the cubemap. In this specific example, the
three vertical lines at the center of Figure 9(d) and the poster
hanged on the wall in Figure 9(b) are better preserved in the
isocube than that in the cubemap. Figure 9(f) shows one more
example. In comparison, the grid structure reflected from the
spacecraft in Figure 9(g) is better preserved in the isocube.

Besides the visual comparison, we also measured the image
quality in terms of PSNR. In the experiment, we first generate
50 random orientations between the object and the viewpoint.
Then for each orientation, we render an image of size 1600×
1600 and measure the PSNR. The control images are the
ones rendered with a cubemap of resolution 768 × 768 × 6.

0 100 200 300 400 500
20

22

24

26

28

30

32

34

36

Resolution of cube face

PS
N

R
 (d

B)

Cubemap
Isocube

Fig. 10. PSNR achieved by isocube maps and cubemaps against the resolution
of cube face.

FINAL VERSION 6

(a)

(b) (c)

(d) (e)

(f) (g) (h)

Fig. 9. Environment mapping with the cubemap and isocube: (a) and (f) are the rendered images in a size of 512 × 512; (b), (d), and (g) are blowups of
the isocube environment mapping; (c), (e), and (h) are blowups of the cubemap environment mapping. Note that the isocube maps sample the environment
more evenly than the cubemaps. (Environment map (a) courtesy of Tomáš Feltl)

Only foreground pixels (occupied by the environment-mapped
object) are counted in the PSNR measurement because the
background pixels must be always the same. To minimize the
interference due to anti-aliasing, we disable most anti-aliasing
functionalities (including mipmapping and anisotropic filtering
introduced in previous section) and enable only the bilinear
interpolation in the experiment. Figure 10 plots the average
PSNR (over 50 images) of both isocube and cubemap against
the face resolution. Since the control images are generated
from a cubemap of 768 × 768 × 6, we choose to compare
the PSNR up to the resolution of 400 × 400 × 6 as the
isocube is resampled from that 768 × 768 × 6 cubemap. In
this particular experiment, the PSNR of isocube is slightly
and consistently better than that of cubemap. Nevertheless,
we have to emphasize that the major advantage of isocube is
the balance instead of quality.

Despite of the two-step decomposition, the actual compu-
tational cost of the complete mapping R → Q is rather low.
The demonstrative shader code in Cg shading language can
be found in Appendix C. This small code already contains all
necessary computation in our mapping. Although it has been
further optimized for speed, only the unoptimized version is
listed in Appendix C for clarity.

To measure the speed performance of isocube (optimized
version of shader) in comparing to the hardware cubemap, we
set up two tests. For both tests, we rendered an environment-

mapped object with 106,466 vertices. The mip-map anti-
aliasing is enabled. In the first test, we measure the frame
rate against the resolution of environment texture. In the
second test, we measure the frame rate against the number
of visible pixels occupied by the object, in other words, the
number of execution of fragment shader. The experiment is
achieved by increasing the screen resolution. All experiments
are conducted on a Pentium IV 2.6 GHz CPU installed with
nVidia GeForceFX 6800 Ultra. Figure 11(a) plots the frame
rates of isocube and cubemap when the resolution of texture
increases. Obviously, the shader implementation of isocube
(∼140 fps) is not as fast as the hardware cubemap (∼210
fps). The increase of texture resolution only slightly decreases
the frame rate. Both maps drop similarly. In Figure 11(b), we
compare how the frame rates drop when the number of visible
pixels increases. The curve of the isocube drops significantly
while that of the cubemap drops steadily. This significant drop
of isocube is mainly due to the computation overhead of its
shader implementation.

Compared to cubemaps, the acquisition or generation of
isocube map is less convenient than that of the cubemap.
Unlike the cubemap, each face of isocube is not a perspective
image. Hence it cannot be obtained by rendering as in the
cubemap generation. Similar to the spherical map and the dual
paraboloid map, the isocube map is generated by resampling
a higher resolution cubemap. For static environment, this may

FINAL VERSION 7

0 100 200 300 400 500 600
0

30

60

90

120

150

180

210

240

270

300

Face resolution of environment map

F
ra

m
e
 r

a
te

 (
F

P
S

)

cubemap
isocube

0 1 2 3 4 5 6

x 10
5

0

30

60

90

120

150

180

210

240

270

300

Number of pixels occupied

F
ra

m
e
 r

a
te

 (
F

P
S

)

cubemap
isocube

(a) (b)
Fig. 11. Speed performance against (a) the texture resolution; and (b) the
number of pixels rendered.

not be a concern. However, it inevitably increases the com-
putational cost when the environment (hence the environment
map) is dynamic.

B. Anisotropic Filtering for Texture Magnification

Figure 12 compares the results of isocube environment map-
ping with (right column) and without the proposed anisotropic
filtering (middle column). It can be seen that artifacts are
attenuated when using the proposed anisotropic filtering. Fig-
ures 12(a) and (f) are rendered with a = 0.024 and b =
0.18. In addition, a frame rate of 164.4 fps is obtained in
rendering these images. By filtering along the edge direction,
our approach may not retain the sharpness of the edges. The
filtered results look a bit blurry compared to the bilinearly
interpolated results. Sharp texture magnification is reported
by preventing interpolation across the boundaries defined in
silhouette maps [25].

Our approach as discussed above depends on the gradient
field of the texture map. The advantages are that it extends
the existing hardware anisotropic filtering and it is efficient
in computation. We can further improve storage efficiency
by storing the gradient angle instead of the 2D gradient
vectors. That is to store gradient angles in the α-channel of
the isocube texture map. However, our approach may not
work well for an extreme magnification. Since the current
implementation interpolates the gradient map by hardware
bilinear interpolation, and artifacts are unavoidable in the
magnified gradient map. This problem could be fixed by using
a user-defined vector edge map [25].

C. Glossy Reflection Approximation

As one more application, we now demonstrate how the
isocube is applied to approximate glossy reflection with pre-
filtering techniques [27], [28], [29]. For simplicity, we assume
the filtering kernel is a box filter. Since the mipmap textures
are generated by box-filtering the original texture map, we
could approximate the box-filtering results by looking-up the
appropriate mipmap texture.

Suppose that the lookup vector Q points to the positive-x
or negative-x isocube face, we do the approximation by,

texCUBE(samplerCUBE tex,
float3 Q,float3 ∆x,float3 ∆y),

where,
∆x = float3(0, 0, η),
∆y = float3(0, 0, η).

The parameter η controls the filter size. The larger the η value
is, the more blurry the rendering result becomes. Figure 13
shows the approximation results of glossy reflection with
isocube environment maps.

VI. CONCLUSION

This paper proposes a novel six-face spherical map, isocube,
which not only fully utilizes the built-in cubemap hardware but
also samples the environment evenly. The computational cost
of the isocube mapping is low. By exploiting the hardware
cubemap operators, the isocube achieves a very high frame
rate. Although the isocube is currently implemented as a
shader (hence, not as fast as the hardware cubemap), we
believe its simplicity will encourage its future hardware im-
plementation. In addition, we propose an anisotropic filtering
to reduce aliasing artifacts due to texture magnification. The
proposed filtering accounts for both the texture gradient and
the distance to the viewpoint. It can be applied to our proposed
isocube as well as other texture mapping techniques.

All cubemap hardwares, however, have the limitation
which creates undesirable discontinuities along the cube face
edges. Like the cubemap, the isocube map suffers from the
seam problem. Users may utilize CubeMapGen [30], a pre-
processing tool that generates a seam-free environment map
or the mipmap chain, to alleviate this problem.

Besides environment mapping, isocube may benefit other
applications requiring uniform representation of the environ-
ment, such as precomputed radiance transfer. It could also be
applied to represent the view in the omnidirectional video, like
iMAX.

ACKNOWLEDGMENTS

We would like to thank Tomáš Feltl for granting us the use
of “dole” environment map. We also thank Guangyu Wang
for his help in capturing environment maps. This project is
supported by the Research Grants Council of the Hong Kong
Special Administrative Region, under RGC Earmarked Grants
(Project No. CUHK417005 and CityU115606).

APPENDIX A: EQUAL AREA PROPERTY

We prove the equal area property of the isocube using differ-
ential geometry. To do so, we first show the isocube mapping
(from sphere to plane) is equiareal. Hence, by showing the
mapped elements on plane are equal in area, we can prove
the elements on sphere are also equal in area. We now review
some basic theories of mappings in differential geometry [31].
Suppose that a curve on a surface S ⊂ �3 has the parametric
representation

x(u1, u2) = (x1(u1, u2), x2(u1, u2), x3(u1, u2)).

The first fundamental form of surface S is

ds2 =
∂x

∂u1
· ∂x

∂u1
(du1)

2 +2
∂x

∂u1
· ∂x

∂u2
du1du2 +

∂x

∂u2
· ∂x

∂u2
(du2)

2.

This quadratic form enables measurement of lengths of
curves, angles, and areas on surface S. Denote its coefficients
as,

E =
∂x

∂u1
· ∂x

∂u1
, F =

∂x

∂u1
· ∂x

∂u2
, G =

∂x

∂u2
· ∂x

∂u2
.

FINAL VERSION 8

(a)

(b) (c)

(d) (e)

(f)

(g) (h)

(i) (j)

Fig. 12. Comparison between the isocube environment mapping (the middle column) and that with the proposed anisotropic filtering applied (the right
column). The jaggy edges shown in blowups (b), (d), (g) and (i) have been smoothed in (c), (e), (h), and (j). (Environment map (a) courtesy of Tomáš Feltl)

Fig. 13. Example screenshots of glossy environment reflection.

Then the discriminant of the first fundamental form is defined
as

g = EF − G2.

Suppose now that S is spherical surface and S ∗ is the
plane, and that both are parameterized in the same coordinates
(u1, u2). An allowable mapping of surface S to S ∗ is called
equiareal if every part of S is mapped onto a part of S ∗ which
has the same area. The necessary and sufficient conditions of
a mapping to be equiareal are as follows:

Theorem 1: An allowable mapping from surface S to S ∗

is equiareal if and only if the discriminants of the first
fundamental forms of S and S ∗ are equal.

The proof can be found in differential geometry textbooks
[31]. With the above theorem, we shall show that the isocube
mapping maintains the equal solid-angle property. Suppose the
spherical surface S has the following parametric form,

x = (x(φ, θ), y(φ, θ), z(φ, θ))

= (sin θ cos φ, sin θ sin φ, cos θ).

Let e, f, g be the coefficients for the first fundamental form
of S. The plane S∗ has the form,

y = (u(φ, θ), v(φ, θ)).

Let E, F, G be the coefficients for the first fundamental form

FINAL VERSION 9

of S∗. We have the area ratio

k =

√
EG − F 2

eg − f2

=
1

sin θ

√
EG − F 2. (10)

If k is a constant, the mapping maps the regions of surface S
with equal area to the regions of S ∗ with equal area in which
the two are related by a constant. In particular, when k = 1
the mapping preserves the same area for the corresponding
regions in S and S∗.

We now transform the isocube partitioning equations into
a mapping representation. To do so, we adopt a different
parametrization (f, u, v) for isocube, where f ∈ [0, . . . , 5]
is the base face index, and (u, v) ∈ [0, 1]2 are the local
coordinates in the face f . Given one equatorial base face, we
have the mapping according to (Equations (1) and (2)),

u =
2

π
φ + 0.5,

v =
3

4
cos θ + 0.5.

Substituting them into the formula Equation (10),

k =
1

sin θ

√
EG − F 2

=
1

sin θ

√
(
2

π
)2 · (3

4
sin θ)2 − 0

=
3

2π
.

Similarly, for the north polar region we have the mapping
according to Equations (3) and (4),

u =
1

2

√
3 − 3 cos θ + 0.5,

v =
2

π
φ
√

3 − 3 cos θ + 0.5.

The coefficients of the first fundamental form are

E = (
2

π

√
3 − 3 cos θ)2,

F = −6φ

π2
sin θ,

G =
[
(
3

4
)2 + (

3φ

π
)2
]
· (sin θ√

3 − 3 cos θ
)2.

Substituting them into Equation (10),

k =
1

sin θ

√
EG − F 2 =

3

2π
.

The above derivation holds for the rest of isocube regions.
As the ratio is always constant, the isocube mapping maps the
regions on the spherical surface with equal area to regions on
the plane with equal area. In other words, isocube maintains
the equal solid-angle property.

APPENDIX B: DISCREPANCY ANALYSIS

Although the equal solid-angle property guarantees all
samples to be equally important, it is worth studying the
uniformity of the isocube sampling pattern. Here the sampling
pattern is formed by putting a sample at the center of each
element. A quantitative metric, generalized discrepancy [13],
is adopted for this purpose. It is defined as,

D(N) =
1

2
√

πN

[
N∑

i,j=1

(
1 − 2 ln

(
1 +

√
1 − �ηi · �ηj

2

))] 1
2

(11)

where {	η1, . . . , 	ηN} is a N -point sequence and 	ηi is a point on
the sphere. The lower the D is, the more uniformly distributed
the sampling pattern is.

Figure 14 shows the discrepancy curves of the isocube and
three other parameterizations discussed in this paper. This
graph plots the discrepancies against the number of samples
(N). As the resolution (number of samples) increases, all
parameterizations have improved uniformities. Among the four
methods, the cubemap has much higher discrepancies. The
discrepancy curve of the isocube almost coincides with that
of HEALPix, and they both are slightly better than the elevated
concentric map.

2 2.5 3 3.5
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

log10(N)

D
(N

)

Cubemap
HEALPix
Isocube
Elevated concentric

Fig. 14. Discrepancy of various sampling patterns.

APPENDIX C: CG PROGRAM OF ISOCUBE MAPPING

The fragment shader below computes the texture lookup
vector Q = [s, t, q]T for the input reflection vector R =
[x, y, z]T. To save the computational cost, we store the values
of the upper four elements in Table I into a lookup table
signTBL.

01 float3 R2Q(float3 R)
02 {
03 float2 I;
04 float3 Q;
05 float4 coef;
06 float phi, y, ya, bequ, quar;
07
08 // compute azimuth angle and convert it in the range [0,4)
09 phi = 2*atan2(R.z, R.x)/PI;
10 phi += step(phi, -0.5) * 4;
11
12 // decide whether the pixel is in the equatorial region
13 y = R.y * 1.5;
14 ya = abs(y);
15 bequ = step(ya, 1.);
16
17 // convert R → I
18 I.x = sqrt(3 - 2*ya);
19 I.x = lerp(I.x, 1, bequ);
20 I.y = phi * I.x;
21
22 // map I → Q
23 quar = floor(phi + 0.5);
24 coef = texRECT(signTBL, float2(quar, 0));
25 Q.x = dot(coef.xy, I);
26 Q.y = lerp(sign(y), y, bequ);
27 Q.z = dot(coef.zw, I);
28
29 return Q;
30 }

REFERENCES

[1] N. Greene, “Environment mapping and other applications of world
projections,” IEEE Computer Graphics and Applications, vol. 6, no. 11,
November 1986.

FINAL VERSION 10

[2] W. Heidrich and H.-P. Seidel, “View-independent environment maps,”
in Proceedings of Graphics hardware, 1998, pp. 39–45.

[3] P. Shirley and K. Chiu, “A low distortion map between disk and square,”
J. Graph. Tools, vol. 2, no. 3, pp. 45–52, 1997.

[4] K. M. Gorski, B. D. Wandelt, E. Hivon, F. K. Hansen, and A. J.
Banday, “The HEALPix primer,” Theoretical Astrophysics Center (TAC)
Kopenhagen, Tech. Rep., Feb. 2003, astro-ph/9905275.

[5] R. Ng, R. Ramamoorthi, and P. Hanrahan, “All-frequency shadows using
non-linear wavelet lighting approximation,” in SIGGRAPH’04, 2004, pp.
376–381.

[6] J. L. Mitchell, “Motion blurring environment maps,” in ShaderX4 ,
W. Engel, Ed. Charles River Media, 2006, pp. 263–268.

[7] D. Voorhies and J. Foran, “Reflection vector shading hardware,” in
Siggraph ’94, 1994, pp. 163–166.

[8] T. Fortes, “Tetrahedron environment maps,” Master’s thesis, Chalmers
University of Technology, Gothenburg, Sweden, 2000.

[9] I. Takashi, “Dynamic global illumination using tetrahedron environment
mapping,” in ShaderX4 , W. Engel, Ed. Charles River Media, 2006, pp.
157–169.

[10] E. Praun and H. Hoppe, “Spherical parametrization and remeshing,”
Siggraph 2003, vol. 22, no. 3, pp. 340–349, 2003.

[11] OpenGL ARB, OpenGL Specification, Version 1.1, 1995.
[12] L. Wan, T.-T. Wong, and C.-S. Leung, “Spherical Q2-tree for sampling

dynamic environment sequences,” in Proceedings of Eurographics Sym-
posium on Rendering ’05, 2005, pp. 21–30.

[13] J. J. Cui and W. Freeden, “Equidistribution on the sphere,” SIAM Journal
on Scientific Computing, vol. 18, no. 2, pp. 595–609, 1997.

[14] P. S. Heckbert, “Survey of texture mapping,” IEEE Comput. Graph.
Appl., vol. 6, no. 11, pp. 56–67, 1986.

[15] F. C. Crow, “Summed-area tables for texture mapping,” in SIGGRAPH
’84, 1984, pp. 207–212.

[16] N. Greene and P. Heckbert, “Creating raster omnimax images from
multiple perspective views using the elliptical weighted average filter,”
IEEE Computer Graphics and Applications, vol. 6, no. 6, pp. 21–27,
1986.

[17] J. McCormack, R. Perry, K. I. Farkas, and N. P. Jouppi, “Feline:
Fast elliptical lines for anisotropic texture mapping,” in Proceedings
of the 26th Annual Conference on Computer Graphics and Interactive
Techniques, 1999, pp. 243–250.

[18] L. Wang, S. Kang, H.-Y. Shum, and R. Szeliski, “Optimal texture map
reconstruction from multiple views,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, 2001, pp. 347–354.

[19] K. Meinds and B. Barenbrug, “Resample hardware for 3d graphics,”
in HWWS ’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, 2002, pp. 17–26.

[20] L. Williams, “Pyramidal parametrics,” in Siggraph 83, 1983, pp. 1–11.
[21] J. Allebach and P. W. Wong, “Edge-directed interpolation,” in Proceed-

ings of IEEE International Conference on Image Processing, 1996, pp.
707–710.

[22] T. M. Lehmann, C. Gönner, and K. Spitzer, “Survey: Interpolation
methods in medical image processing,” IEEE Transactions on Medical
Imaging, vol. 18, no. 11, pp. 1049–1075, 1999.

[23] X. Li and M. Orchard, “New edge-directed interpolation,” IEEE Trans-
actions on Image Processing, vol. 10, no. 10, pp. 1521–1527, 2001.

[24] D. Muresan and T. Parks, “Adaptively quadratic (AQua) image inter-
polation,” IEEE Transactions on Image Processing, vol. 13, no. 5, pp.
690–698, 2004.

[25] P. Sen, “Silhouette maps for improved texture magnification,” in Pro-
ceedings of Graphics Hardware, 2004.

[26] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: a
system for programming graphics hardware in a C-like language,” ACM
Transaction on Graphics, vol. 22, no. 3, pp. 896–907, 2003.

[27] J. Kautz and M. D. McCool, “Approximation of glossy reflection with
prefiltered environment maps,” in Proceedings of Graphics Interface,
2000, pp. 119–126.

[28] M. Ashikhmin and A. Ghosh, “Simple blurry reflections with environ-
ment maps,” Journal of Graphics Tools, vol. 7, no. 4, pp. 3–8, 2002.

[29] J. Kautz, K. Daubert, and H.-P. Seidel, “Advanced environment mapping
in VR applications,” Computers & Graphics, vol. 28, no. 1, pp. 99–104,
2004.

[30] J. Isidoro, “Filtering cubemaps: angular extent filtering and edge
seam fixup methods,” in Siggraph sketch, 2005. [Online]. Available:
www.ati.com/developer/SIGGRAPH05/ Isidoro-CubeMapFiltering.pdf

[31] E. Kreyszig, Differential Geometry. University of Toronto Press, 1959.

Liang Wan received the B.Eng. and M.Eng. degrees
in computer science and engineering from North-
western Polytechnical University, China, in 2000 and
2003 respectively. She is currently a PhD candidate
in computer science at the Chinese University of
Hong Kong. Her research interests include computer
graphics, precomputed lighting, image-based render-
ing, and image processing.

Tien-Tsin Wong received the B.Sci., M.Phil., and
PhD. degrees in computer science from the Chinese
University of Hong Kong in 1992, 1994, and 1998,
respectively. Currently, he is a Professor in the De-
partment of Computer Science & Engineering, Chi-
nese University of Hong Kong. His main research
interest is computer graphics, including image-based
rendering, natural phenomena modeling, and multi-
media data compression. He received IEEE Trans-
actions on Multimedia Prize Paper Award 2005 and
Young Researcher Award 2004.

Chi-Sing Leung received the B.Sci. degree in elec-
tronics, the M.Phil. degree in information engineer-
ing, and the PhD. degree in computer science from
the Chinese University of Hong Kong in 1989,
1991, and 1995, respectively. He is currently an
Associate Professor in the Department of Electronic
Engineering, City University of Hong Kong. His
research interests include neural computing, data
mining, and computer graphics. In 2005, he received
the 2005 IEEE Transactions on Multimedia Prize
Paper Award for his paper titled, “The Plenoptic

Illumination Function” published in 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

