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(a) Original manga (b) Inpainted manga

Fig. 1. Our method automatically fills up the disoccluded regions with meaningful structural lines and seamless screentones. "She Great" ©SEIRAN

Manga inpainting fills up the disoccluded pixels due to the removal of
dialogue balloons or “sound effect” text. This process is long needed by the
industry for the language localization and the conversion to animated manga.
It is mostly done manually, as existing methods (mostly for natural image
inpainting) cannot produce satisfying results. Manga inpainting is more
tricky than natural image inpainting because its highly abstract illustration
using structural lines and screentone patterns, which confuses the semantic
interpretation and visual content synthesis. In this paper, we present the
first manga inpainting method, a deep learning model, that generates high-
quality results. Instead of direct inpainting, we propose to separate the
complicated inpainting into two major phases, semantic inpainting and
appearance synthesis. This separation eases both the feature understanding
and hence the training of the learning model. A key idea is to disentangle the
structural line and screentone, that helps the network to better distinguish
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the structural line and the screentone features for semantic interpretation.
Both the visual comparison and the quantitative experiments evidence the
effectiveness of our method and justify its superiority over existing state-of-
the-art methods in the application of manga inpainting.
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1 INTRODUCTION
Manga inpainting is usually needed in the language localization of
manga and the creation of animated manga. Fig. 2 demonstrates
an example of translating the large “sound effect” text from Japan-
ese to English, for the language localization purpose. Fig. 3(b)-(d)
show three frames from an animated manga (electronic manga with
Powerpoint-like animation, instead of smooth cartoon), converted
from the original static manga (Fig. 3(a)). In both scenarios, the con-
tent behind the disoccluded regions is not available. Because both
the dialogue balloon and the “sound effect” text are in place during
the original layout design and never drawn by the manga artists, no
matter the original manga is prepared digitally or on paper. Hence,
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(a) Manga (b) Inpainted manga (c) Localized manga

Fig. 2. The large “sound effect” text has to be modified during the language
localization. "She Great" ©SEIRAN

(a) Original static manga (b) Frame 1

(c) Frame 2 (d) Frame 3

Fig. 3. Three frames from the animated manga, that is manually converted
from the original static manga. "Give My Regards to Black Jack" ©Shuho
Sato

manga inpainting has to be performed to seamlessly fill up the disoc-
cluded regions. Unfortunately, even with the state-of-the-art natural
image inpainting techniques, the results of applying them to manga
inpainting are far from satisfactory. Manual inpainting is still the
main practice in the industry.
Classical inpainting methods, such as PatchMatch [Barnes et al.

2009], synthesize the missing pixels with the similar visual appear-
ance as the surrounding pixels from the same image. Recent deep
neural network methods advance the natural image inpainting,
with its higher-level semantic understanding and the utilization
of pixels not just from the same image but also from the training
images [Iizuka et al. 2017; Yu et al. 2018]. Unfortunately, both tra-
ditional and learning-based inpainting methods are designed for
natural images, and fail to generate satisfying results for manga
images, even those learning-based models are retrained with manga
data. This is because the bitonal and pattern-rich natures of manga
images can easily confuse existing methods in identifying the region
boundary (Fig. 4(c)). In natural images, the region boundary and
the texture/content usually exhibit significantly different character-
istics, and hence ease their distinction, in which existing methods
implicitly rely on. In sharp contrast, such distinction is no longer

(a) Input (b) [Barnes et al.
2009]

(c) [Yu et al. 2018] (d) Ours

Fig. 4. Comparison of existing image inpainting methods. KaerimichiNo-
Majo ©A-10

obvious in bitonal manga images as demonstrated in Fig. 4(c), the
structural outline and the screened regions may share the same line
width and appearance.

In this paper, we make the first attempt to generate high-quality
manga inpainting. Instead of directly inpainting the final result, we
propose a deep neural network model consists of two sub-networks,
semantic inpainting network and appearance synthesis network. The
semantic inpainting network predicts a pair of inpainted structural
line map and inpainted screentone map. The appearance synthesis
network takes this pair of predictions as guidance and synthesizes
the disoccluded region with pixels from the original manga, using a
contextual attention design. This indirect design allows us to gener-
ate high-quality inpainted content that can be seamlessly combined
with the surrounding pixels in the original manga.

In order to semantically differentiate the structural line and the
screened regions, the semantic inpainting network is subdivided
into two sub-tasks, structural line inpainting for connecting structure
within the disoccluded region, and screentone inpainting for filling
up the screentone. The backward propagated training of our neural
network ensures the consistency between the inpainted structural
line and screentone guidance maps, as well as the utilization of
knowledge from both sides. In order to handle the large disoccluded
regions due to the removal of dialogue balloons, a recurrent up-
dating approach is adopted in designing the semantic inpainting
network to gradually inpaint from the outer ring of the mask to-
wards its interior. This provides more pleasant results than that
from one-step inpainting. In addition, screentone inpainting is per-
formed in the feature domain extracted by a Screentone Variational
AutoEncoder (ScreenVAE) [Xie et al. 2020], namely the ScreenVAE
map. This allows the network to better understand the region-wise
characteristics of screentones and eases the convergence.
We apply our manga inpainting method on various real-world

manga to inpaint the dialogue balloons as well as the “sound effect”
text. Extensive qualitative and quantitative experiments are con-
ducted. Convincing results are obtained in terms of visual quality
and quantitative evaluation. Experiments show that we outperform
existing state-of-the-art inpainting techniques that are originally
designed for natural images. Our contributions can be summarized
as follows:
• We are the first to tackle the challenging manga inpainting
task and obtain high-quality results.
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• We propose to subdivide the manga inpainting task into struc-
tural line inpainting and ScreenVAE map inpainting to better
address, and hence learn, the semantic difference between
structure and screentone.

2 RELATED WORK

2.1 Image Inpainting
Image inpainting has been a classic problem in computer vision
and computer graphics for decades, which aims to fill obstacle or
contaminated regions with visually plausible synthetic contents.
The existing image inpainting methods can be categorized into two
branches, traditional methods and deep neural network methods.
The traditional methods mainly utilize the neighborhood struc-

tural features to search for similar patches to fill the target re-
gions [Barnes et al. 2009; Criminisi et al. 2004; Darabi et al. 2012]. To
minimize the transition discontinuities, image blending is usually
performed between filled regions and source regions [Darabi et al.
2012; Huang et al. 2014]. However, these procedural methods are
computationally expensive since they have to calculate the similarity
scores for all possible target-source pairs. PatchMatch[Barnes et al.
2009] solved these problems by adopting a fast nearest-neighbor
field algorithm. However, it fails to generate semantically meaning-
ful results when plausible objects do not exist in the surrounding
pixels or the low-level feature matching is interfered with by illu-
mination or perspective distortion. Due to the difficulty in crafting
high-level semantic features, the traditional methods generally as-
sume that the target content exists in surrounding pixels.
Recently, deep learning achieves great success in image inter-

pretation and generation. Thanks to the powerful representation
capability, various convolutional neural networks (CNN) models
have been proposed and push forward the state-of-the-art of natural
image inpainting. To generate semantic meaningful content, the
generative adversarial network [Goodfellow et al. 2014] is gener-
ally used in the existing image inpainting models to provide visual
perceptual guidance. Pathak et al. [2016] made the first attempt
in bringing adversarial training [Goodfellow et al. 2014] to image
inpainting. Iizuka et al. [2017] introduced local and global discrim-
inators, assisted by dilated convolution [Yu and Koltun 2015] to
improve the image quality. However, these methods often generated
content with distorted structural lines or blurry textured regions.
Yu et al. [2018] and Song et al. [2018a] adopted a coarse-to-fine
architecture to first inpaint the coarse semantic content and then
generate the fine details by searching for the most similar patches
from the existing pixels. Liu et al. [2019] proposed coherent seman-
tic attention, which considers the feature coherency in the target
regions to guarantee pixel continuity in image level. Zeng et al.
[2019] attempted to inpaint the target region in an iterative ap-
proach from high-level semantics to low-level pixels to generate
fine-grained image patches. However, these methods often suffer
from either over-smoothed boundaries or texture artifacts. To tackle
the problem, two-stage approaches introduce another image comple-
tion stage over the additional prior structure conditions, e.g. edge
information [Nazeri et al. 2019], segmentation mask [Song et al.
2018b], etc. Ren et al. [2019] introduced a structure-aware network,
that splits the inpainting task into the structure reconstruction and

the texture generation sub-tasks. It uses appearance flow to yield
image details from relative regions. Recently, image inpainting with
recurrent updating scheme has been investigated to inpaint from
the hole boundary to the center in an iterative manner. Oh et al.
[2019] used an onion-peel scheme to progressively inpaint from the
hole boundary on video data, using content from reference frames.
Zeng et al. [2020] proposed to refer to a confidence map to itera-
tively revise the unsatisfactory regions. However, these methods
generally fail to generate satisfying results for manga images due
to the distinctive appearances of bitonal screentone patterns, which
is much more tricky to be inpainted with seamless structure and
screentone. Additionally, these methods cannot well distinguish
the semantic components such as structure and textural regions. In
comparison, our proposed method generates high-quality inpaint-
ing results by identifying the semantic difference between structure
and screentone.

2.2 Manga Analysis and Processing
A few attempts have been proposed to identify and extract the con-
tent in manga, such as screentones, structural lines, text, balloons,
and characters. Ito et al.[2015] proposed a method to separate the
line drawings and screentones in manga. Liu et al [2017] proposed a
method for segmenting the textures in manga. Recently, deep learn-
ing approaches are adopted in manga analysis and processing, and
achieved high performance. Li et al.[2017] proposed a deep learning
method for extracting the structural lines from the screened manga.
Aramaki et al.[2016] combined connected-component and region-
based classifications to detect the text in manga. To the best of our
knowledge, none of the existing methods is tailored for manga in-
painting. The most related one is the work proposed by Xie et al.
[2020], which attempted to convert the filling style between manga
and western color comics by interpreting the discrete screentones
into a smooth representation. However, this method still fails to gen-
erate well-matched screentones in the target region when directly
applied in manga inpainting. They also fail to inpaint the structural
lines when the target region is of large size. Sasaki et al.[2017] pro-
posed a deep learning approach for automatically detecting and
completing gaps in line drawings. However, their method can only
work well when the gap is small and generally fail when the gap
is large. In this paper, we made the first attempt to tackle the chal-
lenging manga inpainting task and obtain high-quality results even
for large disoccluded regions.

3 OVERVIEW
Our manga inpainting framework is illustrated in Fig. 5, which
consists of a semantic inpainting network Ginp and an appearance
synthesis network Gsyn. Given an input manga image I and a mask
of the region to be inpaintedM, we first decompose the image into
a structural line map L and a screentone image Is using manga
tailored method [Li et al. 2017]. The screentone image is further
encoded as the ScreenVAE map S with smooth values within each
screentone region [Xie et al. 2020]. Correspondingly, we also decom-
pose the masked manga IM = I ⊙ M into a masked structural line
map LM and a masked ScreenVAEmap SM. In particular, the masked
regions in manga are set to be in white color to maintain the bitonal
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Fig. 5. Overview diagram of our manga inpainting system. Given a manga image I and the region to inpaint indicated by a maskM, we first decompose I
into the structural line L and the ScreenVAE map S, which are then inpainted by the semantic inpainting network Ginp. The inpainted structural line L̃ and
ScreenVAE map S̃ are further fed into the appearance synthesis model Gsyn as semantic guidance maps to utilize known pixels to predict the occluded pixels
Ĩ ⊙M. Besides, to handle large occlusions, the semantic inpainting runs in a recurrent updating fashion to gradually infer content from outermost contours to
interior. KaerimichiNoMajo ©A-10

nature. Then, the masked structural line map LM and the masked
ScreenVAE map SM are fed to the semantic inpainting networkGinp
to generate two semantic guidance maps, the inpainted structural
line map L̃ and the inpainted ScreenVAE map S̃. However, L̃ and S̃
alone cannot be directly used for the final inpainting, because the
screentones generated this way usually does not match well with
the surrounding screentones (Fig. 8(c)). Instead, we propose an ap-
pearance synthesis networkGsyn with a contextual attention design.
The goal is to utilize the original surrounding pixels, through learn-
ing from the contextual with the guidance of L̃& S̃, to synthesize the
inpainting with semantic coherence and seamless appearance (es-
pecially screentones) to the surrounding pixels. The whole process
can be formulated as:

L̃, S̃ = Ginp (LM, SM,M), (1)

Ĩ = Gsyn (IM, L̃, S̃,M). (2)

Importantly, to better understand the manga semantic informa-
tion, our semantic inpainting network is subdivided into two dis-
tinctive but correlated sub-tasks: structural line inpainting for con-
necting structures within the disoccluded region, and region-wise
screentone inpainting for filling up proper screentone patterns. It
helps to distinguish two visually close but functionally different
manga elements and hence promotes the effectiveness of semantic
generation. Furthermore, to circumvent the challenge of inpainting
large disocclusion, a recurrent updating approach is adopted to infer
the content in an iterative manner. The semantic content of missing
regions is progressively inpainted from outer ring of mask to center
to simplify the task. Then the mask is gradually shrunk for the next
iteration. The number of iterations is fixed, and currently fixed to 5
iterations.
Supervised by the groundtruth, the semantic inpainting model

and the appearance synthesis model are first trained separately, and
then jointly trained for fine-tuning. The detailed model architectures
and loss functions are described in Section 4.

4 APPROACH
We divide the manga inpainting problem into two major steps.
Firstly, we predict the semantic elements in the disoccluded re-
gions. Then, we synthesize the appearance conditioned by semantic
guidance. Comparing to existing direct inpainting solutions that
usually fail to predict reasonable disoccluded manga regions, our
indirect framework divides and conquers the problem by disentan-
gling semantic interpretation and appearance synthesis. Below, we
elaborate on the two steps in detail.

4.1 Semantic Inpainting
Each manga contains two key components, structural line and
screentone. They play different roles in semantic illustration. Hence,
we first decompose the input manga image IM into the structural line
LM and the screentone components SM. In particular, we employ the
manga structural line extractor [Li et al. 2017] to extract the structure
lines from the input manga image, and the ScreenVAE method [Xie
et al. 2020] to represent the manga image as a ScreenVAE map. The
ScreenVAE representation serves to convert the region-wise bitonal
screentone to a point-wise 4-channel ScreenVAE representation to
ease the feature learning and translation. Similarly, the groundtruth
structural line map L and the groundtruth ScreenVAE map S can
be extracted from the original manga I. The two separated compo-
nents LM and SM are then concatenated and fed into our semantic
inpainting network Ginp to predict the disoccluded structures L̃
and screentones S̃. Our semantic inpainting network features a
dual-branch structure, where the structural lines and screentones
contribute to consistent semantic maps by benefiting each other.
The network architecture is detailed in the supplementary material.

One key challenge in region-filling of our semantic inpainting task
is the huge size of the disoccluded regions, especially for dialogue
balloons. We miss almost a significant portion of prior knowledge to
recover the semantic information within the region. To handle this
problem, we adopt a recurrent updating approach in the semantic
inpainting network, as depicted by the yellow dashed arrow in
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(a) Input (b) i=1 (c) i=2 (d) i=3 (e) i=4 (f) i=5

Fig. 6. The inpainted results generated after each of the 5 iterations. Here, we
use mask (each pixel can only be 0, 0.5 or 1) to allow the inpainted outermost
ring regions to be refined in the whole iterative process. KaerimichiNoMajo
©A-10

Fig. 5. Specifically, our semantic inpainting network takes a mask
M as input to specify the iteratively changed inpainting focus. The
pixel values in the mask only might be 0, 0.5, or 1, where 1 denotes
the highest inpainting priority, 0 means no constraint, and 0.5 is
in between. The upper row of Fig. 6 visualizes the masks of all
iterations. The first mask is filled with value 1. After each iteration,
we shrink the mask by filling the current outermost 1

N ring region
with value 0.5, where N is the total number of iterations. This
approach allows us to train the network to focus on different regions
for different iteration. Empirically, N = 5 is enough to achieve
visually satisfactory results.

Loss Function. Our semantic inpainting model is optimized un-
der the loss function composed of five loss terms, structural line
reconstruction loss Llrec, ScreenVAE map reconstruction loss Lsrec,
adversarial loss Ladv, feature matching loss Lfm and binarization
loss Lbin, as formulated respectively below.
• Structural line reconstruction loss. The structural line re-

construction loss Llrec ensures the generated structural line L̃ to
be similar to the groundtruth structural line L. However, naive
pixel-wise measurement on L̃ and L is inappropriate because slight
misalignment may not affect the visual fidelity but comewith a great
pixel-wise difference. Instead, we propose to compute a distance
field mapMd [Frisken et al. 2000] computed from the structural line
maps, to penalize the structural lines away from the target ones in a
continuous manner. The weight value in Md at point p is computed
as:

Md (p) =
∥p − PS (p)∥
√
H ∗W

+ ϵ, (3)

where S is the 2D point set of the structural lines, and PS (p) is
the projection of p in set S . It is normalized by the factor

√
H ∗W .

ϵ = 0.5 is used as base value. Fig. 7 shows an example of the distance
field map. We can see that the penalty grows as the position is away
from the groundtruth. Like the natural image inpainting tasks, the

(a) Structural line (b) Distance field
for line Md

(c) Mask (d) Confidence
map for maskMc

Fig. 7. Distance field map of the structural line and the confidence map of
the mask.

interior regions are more ambiguous to be learned than those outer
regions since no immediate surrounding connections are available.
This difference will be amplified in the case of sparse structural
lines. To alleviate the learning ambiguity, we introduce a confidence
mapMc that has radically decreasing values away from the mask
boundary to help the network to focus more on those regions with
stronger context prior. Then, the structural line reconstruction loss
is computed as:

Llrec =
∑
{∥ (L̃ − L) ⊙Md ⊙Mc∥2} (4)

• ScreenVAE map reconstruction loss. The ScreenVAE map
reconstruction loss Lsrec ensures the inpainted ScreenVAE map S̃
to be similar to the groundtruth ScreenVAE map S. We adopt pixel-
wise mean square error (MSE) to regularize the similarity with a
confidence map Mc encourage to learn from more reliable regions.
The reconstruction loss for ScreenVAE map can be computed as:

Lsrec =
∑
{|(S̃ − S) ⊙Mc∥2} (5)

• Adversarial loss and feature matching loss The adversar-
ial loss Ladv and feature matching loss Lfm are to constrain the
distribution of the generated structural line or screentone to be
as indistinguishable as possible from the real ones. Note that, the
structural line and ScreenVAE map are correlated, i.e. structural
line usually locates at the place with abrupt change of screentone
types. Here, we use an adversarial loss [Goodfellow et al. 2014] on
the inpainted guidance maps. Specifically, we adopt a discriminator
Dls with 5 strided downscaling blocks. To stabilize the adversarial
training, we also encourage the similarity between the extracted
discriminative features of the generated results and the groundtruth.
The adversarial loss and feature matching loss is defined as:

Ladv =
∑
{logDls (L, S) + log(1 − Dls (L̃, S̃))} (6)

Lfm =
∑
∥ϕi (L, S) − ϕi (L̃, S̃)∥2 (7)

where ϕi (., .) is the extracted feature maps by the discriminator Dls
on i-th layer. We empirically use the layers i ∈ {3, 4, 5}.
• Binarization loss With the above losses alone, we find that

the generated structural line tends to be blurry, so we introduce
the binarization loss Lbin to encourage the network to generate
black-and-white pixels, which is defined as:

Lbin =
∑
∥|L̃ − 0.5| − 0.5∥2, (8)

where | · | means to compute the element-wise absolute value while
the L̃ ranges in [0, 1].
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Overall, the loss function of our semantic inpainting network is
defined as the weighted sum of the five loss terms:

Linp = αlrecLlrec+αsrecLsrec+αadvLadv+αfmLfm+αbinLbin (9)

where αlrec = 20, αsrec = 20, αadv = 1, αfm = 5 and αbin = 1 are
empirically adopted to balance these terms.

4.2 Appearance Synthesis
Given the inpainted semantic maps, L̃ and S̃, an intuitive idea is
to directly reconstruct the output manga from the maps with the
ScreenVAE model [Xie et al. 2020]. However, as results shown in
Fig. 8, the reconstructed screentones present noticeable visual in-
consistency to the surrounding screentone in the original manga.
One possible reason is that the learned ScreenVAE cannot represent
all existing screentones equally well due to dataset bias. Instead, we
only utilize the semantic maps as correlation guidance and fill up
the disocclusion regions by borrowing features from known sur-
rounding regions in the non-masked area. This design shares the
same spirit with the contextual inpainting method [Yu et al. 2018]
and improves the visual conformity to the original appearance as
well as retaining plausible semantic meanings.

(a) Manga (b) Blown-up re-
gion

(c) Screentone de-
coded by Screen-
VAE

(d) Ours

Fig. 8. Screentone directly decoded from the ScreenVAE [Xie et al. 2020]
usually does not match well with the surrounding screentone in the input.
KaerimichiNoMajo ©A-10

Loss Function. We formulate four loss terms to train the appear-
ance synthesis network, i.e. manga reconstruction lossLmrec, Screen-
VAEmap lossLscr, adversarial lossLadv, and binarization lossLline.
• Manga reconstruction loss The manga reconstruction loss

encourages the model to generate results that are similar to the
groundtruth screened manga. Similar to the technique used in Llrec
to suppress the ambiguity, we also adopt a confidence map to empha-
sis more near the mask boundary to guarantee a natural transition.
Fig. 9 demonstrates the superiority of this design. The manga recon-
struction loss is then defined as:

Lmrec =
∑
{∥ (Ĩ − I) ⊙Mc∥2} (10)

• ScreenVAE map loss The ScreenVAE map loss ensures that
the generated manga image is inpainted with the same screentone
types as the groundtruth. With the manga reconstruction loss alone,
the model may generate screentones with a similar tone but dif-
ferent screentone types. Such inconsistency in screentone patterns
significantly hurts the visual quality. So, the ScreenVAE map loss is

(a) Input (b) Inpainted guidance (c) w/oMc (d) wMc

Fig. 9. The inpainted results generated with and without the weight masks.
The guidance ScreenVAE map is visualized after PCA. KaerimichiNoMajo
©A-10

then formulated as the difference between the screenVAE map of
generated manga and the groundtruth ScreenVAE map S.

Lscr =
∑
∥SVAE(Ĩ) − S∥2 (11)

where SVAE denotes the pretrained ScreenVAE model [Xie et al.
2020] that computes the ScreenVAE map from the input manga
image.
• Adversarial loss The adversarial loss encourages the gener-

ated manga to follow the information provided by the inpainted
structural line and inpainted ScreenVAE map. We adopt Conditional
GAN [Mirza and Osindero 2014] to impose this constraint. A dis-
criminator Dmg with 5 strided downscaling blocks is introduced.
The adversarial loss is defined as:

Ladv =
∑
{log(1 − Dmg (Ĩ, L, S)) + logDmg (I, L, S)} (12)

• Binarization loss The binarization loss is introduced to en-
courage bitonal appearance of the synthesized manga image Ĩ. The
binarization loss Lbin is defined as:

Lbin =
∑
∥|Ĩ − 0.5| − 0.5∥2, (13)

The overall loss function for the appearance synthesis network
is defined as the weighted sum of the four terms:

L = βmrecLmrec + βscrLscr + βadvLadv + βbinLbin (14)

where βmrec, βscr, βadv and βbin are the weight coefficients for differ-
ent loss terms. We empirically set βmrec = 10, βscr = 100, βadv = 1,
and βbin = 1 in our experiments.

5 EXPERIMENTAL RESULTS

5.1 Data Preparation and Implementation Details
Dataset. Currently there is no publicly available high-resolution

manga dataset that we can directly use. So, we manually collect
20,000 screened manga of resolution 2,048× 1,536 to train our model.
For each screened manga, we extract the structural lines using the
line extraction model by Li et al. [2017] and the ScreenVAE map
using the model proposed by Xie et al. [2020].
For our experiments, we use two types of image masks, regular-

shaped and irregular-shaped, to imitate the balloon and sound effect
text, respectively. We configure the regular-shaped masks as rec-
tangle masks covering about 4% to 25% of the image at a random
location. For the irregular-shaped masks, we gather them from the
work of Liu et al. [2018]. They are generated based on their sizes
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relative to the entire image in the increment range of 5% to 20%.
Meanwhile, we further dilate the masks to simulate the sound effect
text in manga. Overall, the irregular masks cover about 10% to 50%
of the image.

Training. We trained ourmodel in the PyTorch framework [Paszke
et al. 2017]. The network weights are randomly initialized using
the method of [He et al. 2015]. When training the semantic inpaint-
ing model, we empirically set parameters as αlrec = 20, αsrec = 20,
αadv = 1, αfm = 5, and αbin = 1. To train the appearance synthesis
model, we set βmrec = 10, βscr = 100, βadv = 1, and βline = 1. Adam
solver [Kingma and Ba 2014] is applied to two models with a batch
size of 4 and an initial learning rate of 0.0001.

5.2 Comparision
To evaluate our method, we compare our inpainted results against
the-state-of-art image inpainting methods. There are three cate-
gories, including PatchMatch [Barnes et al. 2009] using low-level
image features, four feed-forward generative models with deep con-
volutional networks [Nazeri et al. 2019; Xie et al. 2020; Yu et al. 2018;
Zeng et al. 2019] and a commercial software, Photoshop [2021].
The visual comparison can be seen in Fig. 10. When inpainting

the disoccluded regions in manga, we need to guarantee both the
meaningfully structural lines and consistent screentones. We can
see that, in general, our method shows plausible results which not
only contains clear and pleasant structural line but also homogenous
screentones over regions to show great visual impression. Although
the results inpainted by PatchMatch [Barnes et al. 2009] can have
realistic patterns, it failed to generate semantically meaningful con-
tent as it only considers the low-level features. We also compare our
inpainted results against a commercial software Photoshop [2021]
with content-aware filling option. Although they can generate plau-
sible patches over small regions, they fail to generate acceptable
structures over large regions.

We also performed a comparison against 4 deep learning methods.
Note that three of them are originally designed for natural image
inpainting [Nazeri et al. 2019; Yu et al. 2018; Zeng et al. 2019] and
we tested with their models retrained with our training data. From
Fig. 10, we can see that all the methods tailored for natural image in-
painting fail to understand the content of manga and synthesize the
appearance of screentones. We also compared to the manga filling
style translation method proposed by Xie et al. [2020] which has
shown their potential on manga inpainting. However, their method
cannot generate screentone that matches well with the surrounding
non-masked screentone in the original manga. Moreover, they do
not generate the structural line inpainting, as shown in Fig. 10.

Other than the qualitative comparison, we also evaluate the per-
formance of all these methods with quantitative measurements. We
first collected 500 manga images and then generate random masks.
These images and masks are further inpainted by these methods.
The quantitative evaluation is listed in Table 1. We adopt 3 metrics
to evaluate the quality of these inpainted images, including Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM) [Wang et al. 2004], and Learned Perceptual Image Patch
Similarity (LPIPS) [Zhang et al. 2018]. For the PSNR and SSIM mea-
surement, we only measure the masked regions, non-masked area

Table 1. The quantitative comparison to various state-of-the-art methods.

Methods PSNR SSIM LPIPS
[Barnes et al. 2009] 8.6844 0.3412 0.1107
[Yu et al. 2018] 9.0901 0.4101 0.1127
[Zeng et al. 2019] 8.3175 0.3497 0.1217
[Nazeri et al. 2019] 8.4133 0.3895 0.1141
[Xie et al. 2020] 7.8237 0.2477 0.1318
Ours 10.8302 0.5373 0.0706

is excluded. Note that the PSNR and SSIM scores have limitations
in evaluating inpainted content. A slight shift of content that is
visually acceptable, can be over-penalized by these metrics, as they
are alignment-sensitive. Besides the PSNR and SSIM, we adopt a
perceptual-associated metric, Learned Perceptual Image Patch Simi-
larity (LPIPS)[Zhang et al. 2018], to evaluate the distance between
image patches. The LPIPS is often used as a deep image quality
assessment for image synthesis. In this paper, the LPIPS is evalu-
ated based on the VGG16 [Simonyan and Zisserman 2014] model.
The lower the LPIPS score is, the better the visual quality of the
inpainted content is. From the Table 1, we can see that our results
outperform all the existing methods, in terms of all metrics.

5.3 Ablation Study
To verify the effectiveness of individual loss term, we conduct abla-
tion studies for each module by visually and quantitatively compar-
ing the generated output.

Semantic inpainting model. Fig. 11 shows the generated structural
lines and ScreenVAE map of the trained model without individual
loss term. The top row shows the inpainted structural line mapwhile
the bottom row visualizes the inpainted ScreenVAE map. Without
the structural line loss Llrec, some fine structural line may not be
generated (top row of Fig. 11(c)). Similarly, the ScreenVAE map
Lsrec cannot be inpainted well without the ScreenVAE map loss
(bottom row of Fig. 11(d)). Without the adversarial loss Ladv and
feature matching loss Lfm, the network may fail to be aware of
the high-level semantic features, so the generated results for these
large regions are usually not recovered (Fig. 11(e)). The binarization
loss Lbin will avoid the generated structural line to be smoothed
out (top row of Fig. 11(f)). In comparison, the combined loss can
help the network to generate meaningful structural line as well
as continuous and aligned ScreenVAE map for disoccluded region
(Fig. 11(g)). The quantitative evaluation in Table 2 also shows that
the combined loss quantitatively outperforms the others.

Appearance synthesis model. Fig. 12 shows the generated screened
manga of the trained model without individual loss term. Without
the manga reconstruction loss Lmrec, unconsistent results may be
generated (Fig. 12(d)). When we remove the ScreenVAE map loss
Lsrec, the model is not restricted to generate consistent screentones
for disoccluded regions. As we can see in Fig. 12(e), the disoccluded
regions may fail to be filled with screentones. Without the adver-
sarial loss Ladv, the network may fail to generate homogenous
screentones, so the generated screentones for these regions may
be noisy (Fig. 12(f)). Note that the difference between Lsrec and
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(a) Input (b) Photo-
shop[2021]

(c) [Barnes et al.
2009]

(d) [Yu et al.
2018]

(e) [Zeng et al.
2019]

(f) [Nazeri et al.
2019]

(g) [Xie et al.
2020] (h) Ours

Fig. 10. The inpainted results generated by various state-of-the-arts inpainting methods. The mask is labeled in green. KaerimichiNoMajo ©A-10
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(a) Input (b) Masked input (c) w/o Llrec (d) w/o Lsrec (e) w/o Ladv and Lfm (f) w/o Lbin (g) Ours

Fig. 11. The inpainted results generated by semantic inpainting model with and without different loss terms. The ScreenVAE map is visualized after PCA.

Table 2. The quantitative evaluation by semantic inpainting model with
and without different loss terms.

Methods L̃ S̃
SSIM LPIPS PSNR SSIM

w/o Llrec 0.6913 0.0780 22.7614 0.9224
w/o Lsrec 0.6740 0.0833 22.1696 0.9157

w/o Ladv and Lfm 0.6288 0.0974 24.8754 0.9452
w/o Lbin 0.6185 0.1100 24.2036 0.9402
Ours 0.7443 0.0638 29.7900 0.9745

Table 3. The quantitative evaluation by appearance synthesis model with
and without different loss terms.

Methods PSNR SSIM LPIPS
w/o Lmrec 12.2863 0.6188 0.0585
w/o Lsrec 14.3382 0.6905 0.0478
w/o Ladv 14.0485 0.6724 0.0460
w/o Lbin 13.4857 0.6270 0.0541
Ours 14.9836 0.6935 0.0449

Ladv is that Lsrec encourages the generated results to be filled with
screentones but the screentones may be a little noisy. In the space
of ScreenVAE map, similar screentones can be projected to similar
representations including the screentones with noise. Ladv can en-
courage the generated screentones to be homogenous over region.
As we see in Fig. 12(g), when we remove the binarization loss Lbin,
blurry results may be resulted. In comparison, combining all losses
can help the network to recognize different types of screentones
and generate clear and consistent screentone for the disoccluded
regions (Fig. 12(h)). We also quantitatively evaluate the models with
different losses. As listed in Table 3, the combined loss achieves the
best numerical performance.

Recurrent updatingmodule in Semantic inpaintingmodel. To verify
the effectiveness of our recurrent updating module, we conduct an
ablation study on the effect of using different number of iteration.
Due to the limited GPU memory, we only compare the results with
iteration count t ∈ [1, 5] as larger t requires to train with a smaller
patch size which will inevitably degrade the performance. Table 4
shows the quantitative evaluations for different iteration counts.
Other than evaluating the quality of the inpainted manga, we also
evaluate the quality of structural line which is a visually apparent
component in manga. SSIM and IPLPS are used to measure the
inpainted quality. Note that SSIM metric is alignment-sensitive,
while LPIPS is more reasonable as it is more perceptually related
and alignment-insensitive. We quantitatively evaluate the results
under three different resolutions including 256 × 256, 512 × 512
and 1024 × 1024. The masks are directly resized to the required
resolution while the testing images are cropped on the same image
set. From the statistics, we can see that with resolution 256×256, the
content can be inpainted within an iteration. When the resolution
increases, there is a trend that higher iteration count is needed
to generate more plausible inpainted results, e.g. N = 3 under
512 × 512 and N >= 3 under 1024 × 1024. However, the optimal
number of iteration is inconclusive from the statistics. Specifically,
for resolution of 1024 × 1024, although the LPIPS may get worse
with more iterations, we still prefer to inpaint with more iterations
for larger missing regions, based on our experience. We empirically
set N = 5 in this paper to inpaint with more structural lines as the
testing images are with resolution about 1024 × 1024 and masked
over 20% area.

Note that SSIM, PSNR, and LPIPS have limitations in evaluating
the quality of inpainted content. They all cannot account for the
non-uniqueness nature of inpainted content. As there may exist
multiple visually plausible and reasonable inpainted content, any
metric comparing to the groundtruth implicitly assumes that the
inpainting must be unique. Moreover, the LPIPS model we used in
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(a) Manga (b) Inpainted
Structural line

(c) Inpainted
ScreenVAE map

(d) w/o Lmrec (e) w/o Lsrec (f) w/o Ladv (g) w/o Lbin (h) Ours

Fig. 12. The inpainted results generated by the appearance synthesis model with and without different loss terms. The mask is labeled in green. The ScreenVAE
map is visualized after PCA. KaerimichiNoMajo ©A-10

Table 4. The quantitative comparison with different iterations.

Resolution Iterations L̃ Ĩ
SSIM LPIPS SSIM LPIPS

256 × 256

N=1 0.8432 0.0430 0.6352 0.0637
N=2 0.8362 0.0432 0.6318 0.0634
N=3 0.8290 0.0448 0.6247 0.0644
N=4 0.8227 0.0465 0.6152 0.0657
N=5 0.8168 0.0484 0.6049 0.0672

512 × 512

N=1 0.7611 0.0692 0.5470 0.0725
N=2 0.7512 0.0650 0.5460 0.0713
N=3 0.7443 0.0638 0.5373 0.0706
N=4 0.7386 0.0639 0.5293 0.0725
N=5 0.7339 0.0642 0.5286 0.0729

1024 × 1024

N=1 0.6844 0.0905 0.4573 0.0921
N=2 0.6743 0.0839 0.4578 0.0908
N=3 0.6743 0.0791 0.4504 0.0901
N=4 0.6706 0.0774 0.4579 0.0907
N=5 0.6669 0.0767 0.4392 0.0922

our experiments is trained based on natural photographs which
may be substantially different from our manga images in nature.

5.4 Limitations
Our framework still suffers from some limitations. The currently
trained model sometimes cannot generate rarely seen objects in
the background. This is mainly due to the insufficiency of the data
containing purely background. Most training images are covered
with human characters. For example, in Fig. 14, the fence on the
background cannot be well inpainted. Meanwhile, our proposed
method might not be able to achieve high-quality content-rich in-
painting if there is very little (or even no) contextural information
provided. An example can be found in Fig. 15. Our model fails to
recover the cabinet in the bottom-left while we manage to recover
the top-right wall structure. We believe that this ill-posed problem

of lacking prior contextural cues can be significantly relieved by
providing additional constraints. Such additional constraints can
be from a given template dataset or simply the user hint. We shall
consider this as one of our future works.

6 CONCLUSION
In this paper, we made the first attempt to tackle the challenging
manga inpainting task and obtain high-quality results. We proposed
to subdivide the manga inpainting task into structural line inpaint-
ing and ScreenVAE map inpainting to better address, and hence
learn, the semantic difference between structure and screentone.
We further adopted recurrent updating scheme to tackle large dis-
occluded regions and improve the visual quality of the inpainting.
Our method generates seamless high-quality inpainting results in
terms of both plausible structures and well-matched screentones.
Experiments show that we outperform existing state-of-the-art in-
painting techniques that are originally designed for natural images.
Our method may benefit various manga reproduction applications,
such as manga localization and motion manga generation.
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