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Figure 1: “The train wheel.”(a) Snapshots of an input sequence (10 frames, 1221 x668) exhibiting severe partial occlusions (coupling rods)
and similar objects (wheel spokes). (b) Region correspondences estimated by the state-of-the-art EXCOL. Note how coupling rods and wheel
spokes are wrongly corresponded throughout the sequence. (c) Our result is highly accurate and consistent. For better comparison and
visualization, we dress regions in (b) and (c) with the same colors as much as possible, and dim less-interesting regions.

Abstract

The ability to identify objects or region correspondences between
consecutive frames of a given hand-drawn animation sequence
is an indispensable tool for automating animation modification
tasks such as sequence-wide recoloring or shape-editing of a
specific animated character. Existing correspondence identification
methods heavily rely on appearance features, but these features
alone are insufficient to reliably identify region correspondences
when there exist occlusions or when two or more objects share
similar appearances. To resolve the above problems, manual
assistance is often required. In this paper, we propose a
new correspondence identification method which considers both
appearance features and motions of regions in a global manner.
We formulate correspondence likelihoods between temporal region
pairs as a network flow graph problem which can be solved by a
well-established optimization algorithm. We have evaluated our
method with various animation sequences and results show that
our method consistently outperforms the state-of-the-art methods
without any user guidance.
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1 Introduction

Although 2D hand-drawn cel animations can now be produced
cost-effectively on computer platforms, animators still have to
manually draw each single frame via digital tablets (raster-based
or vector-based) or physical papers followed by scanning
(raster-based only). Once a hand-drawn animation sequence
is completed, further modifications such as recoloring or
shape-editing become tedious and troublesome. Animators need
to manually modify the animation sequence in a frame by frame
manner because correspondence information is often unavailable
in a completed animation sequence. If we can automatically
acquire spatiotemporal correspondence information in an animation
sequence, we can further prorogate the above modifications
automatically between frames. Besides, in the production of
new animations, by knowing correspondence information, new
inbetweening frames can be created by morphing. This can produce
high-quality smooth-motion animations without increasing labor
cost.

Note that it is impractical to request animators to provide
correspondence information during initial drawing since animators
are accustomed to drawing sketches freely without specifying
correspondences. Identifying correspondences between objects
in live-action videos is a well-studied area in computer vision,
but state-of-the-art computer vision techniques such as optical
flow estimation [Horn and Schunck 1981; Lucas and Kanade
1981] and region tracking [Shitrit et al. 2014; Park et al. 2015]
still cannot be directly applied to track regions in cel animations
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Figure 2: (a) Input sequence. (b) Warped images from previous
[frames via optical flow estimation.

because of three fundamental differences between cel animations
and live-action videos. Firstly, there is no guarantee that animation
contents are physically correct. Secondly, object motions in cel
animations are more choppy and vigorous than those in live-action
videos [Bregler et al. 2002]. Thirdly, animation objects are usually
texture-less. All these violate the basic assumptions that modern
optical flow estimation and region tracking algorithms rely on.
Figure 2(b) visualizes a poor correspondence result generated by
a state-of-the-art optical flow estimation method [Xu et al. 2012].

Research attempts have also been made in estimating region
correspondences between two consecutive frames in animations
or cartoons based on appearance features, such as color, shape,
and distance [Sykora et al. 2005; Zhang et al. 2009; Zhang et al.
2012; Liu et al. 2013]. However, appearance features alone are
insufficient to reliably identify region correspondences, when there
exist complete or partial occlusions (e.g. the orange car window and
the blue car body in Figure 2), or when two or more objects share
same or similar appearances (e.g. the two red wheels in Figure 2).
Correspondence estimation is further complicated when regions are
split or merged during time (e.g. the blue car body in frame 1 is split
into two parts in frame 2 in Figure 2).

According to the psychological studies [Adelson and Bergen 1985;
Werner 1965], humans tend to group objects together based on
not only their appearances but also their motions. Even if
objects are texture-less, occluded and visually similar, humans
can still correctly identify corresponded regions over a whole
sequence based on their motions. By coupling motions and
appearance features together, we are able to develop an improved
correspondence identification model. In this paper, we propose
a method to estimate spatiotemporal region correspondences over
a cel animation sequence based on both the appearances and
the motions of regions. It overcomes cases of complete or
partial occlusions and is able to distinguish objects with similar
appearances but different semantics. Our method can survive even
in cases of region splitting or merging. The key is to simultaneously
analyze correspondences of all involved regions and their complete
trajectories over the whole animation sequence instead of tracking
each individual region between two local consecutive frames. We
formulate this spatiotemporal region correspondence estimation
problem as a network flow problem and solve for the global
optimum using the k-shortest path algorithm [Yen 1971]. Each
flow in the network corresponds to a potential correspondence
trajectory of a region. Since the optimal flows can branch and
merge, we can natively support the complex region splitting and
merging scenarios. Through the global optimization and a motion
model, global region correspondences can be inferred even when
there exist complete/partial occlusions and similar/identical objects.
Figure 1(c) shows how our method effectively handles occlusions
and distinguishes similar regions, respectively.

To validate the effectiveness of our method, we apply our
method to various real-world challenging animation sequences with

complete/partial occlusions, multiple identical/similar objects, or
region splitting and merging. Convincing results are obtained in all
tested cases. Our main contributions are summarized as follows:

e We propose to simultaneously estimate correspondences of
all regions over the whole sequence based on both their
appearances and motions.

e We formulate the problem as a network flow problem and
solve for the global optimum using the k-shortest path
algorithm.

2 Related Work

Existing works can be roughly classified into two categories:
techniques tailored for live-action videos, and techniques tailored
for cartoons and animations.

Techniques for Live-Action Videos For live-action videos,
in order to estimate pixel correspondences across frames,
state-of-the-art methods are commonly based on optical flow
estimation [Horn and Schunck 1981; Lucas and Kanade 1981]
which models motion of a point as spatial displacement. A
comprehensive survey can be found in [Baker et al. 2011].
However, optical flow techniques cannot be directly applied to cel
animations. The vigorous object motions in animations may violate
the motion smoothness assumption in optical flow techniques. The
texture-less nature of cartoons may also make the texture-based
feature matching unreliable.

Multi-object tracking techniques tailored for live-action videos
are also related to our application. These methods first detect
moving objects in each frame and then link them into trajectories.
To find optimal trajectories, a constrained network flow problem
is usually formulated and solved via various approaches, such
as bipartite graph algorithm [Pellegrini et al. 2010], k-shortest
path optimization [Berclaz et al. 2011; Shitrit et al. 2014], and
minimum-cost network flow [Butt and Collins 2013; Park et al.
2015]. An indepth survey can be found in [Smeulders et al.
2014]. These existing multi-object tracking methods also fail to
be applied to cel animations because of the vigorous motions and
texture-less regions in cartoons. Note that our network flow model
is different from these existing methods by containing an explicit
region motion model. This explicit motion model allows us to
reliably depict choppy region motions between frames, even with
occlusions.

Techniques for Cartoons The existing correspondence analysis
methods tailored for cartoons and animations can be roughly
classified into three categories with respect to the differences in
primitives: point-based, stroke-based, and region-based.

Point-based correspondence estimation methods estimate point
correspondences between consecutive frames based on local image
features of points. In particular, Sykora et al. [2009; 2011]
and Noris et al. [2011] proposed to model the correspondence
between two cartoon frames as a as-rigid-as-possible deformation.
Color information is required in order to measure local similarity
between two image points. More attempts have been made in
registering black-and-white line drawings without relying on color
information [Song et al. 2013; Xing et al. 2015]. However, they
are only applicable to small object deformations, and fail when the
shapes of objects change vigorously (large motion).

Stroke-based correspondence estimation methods take vector-based
animation frames as input, and find correspondences of strokes
between every two consecutive frames. By assuming the
depth ordering of objects unchanged throughout the sequence,
Kort [2002] proposed a rule-based method to infer stroke
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Figure 3: System Overview. (b) Pixels color-coded with the same color represent a region. (d) Inter-frame appearance dissimilarity matrix.
(e) Inter-region motion term. R is the rotation matrix. t is the translation vector. (f) A non-terminal node n. , represents the correspondence
relationship between two regions a and b. (g) Pixels color-coded with the same color in all frames represent a corresponded region.

correspondences. Whited et al. [2010] proposed to find
stroke correspondences by a set of user-guided semi-automatic
techniques. Although these methods may handle occlusions in
some specific scenarios, they generally fail to solve occlusions in
real-world animations, which are more complicated and violate
their assumptions.

Region-based correspondence estimation methods take regions
as primitives, and find region correspondences between two
consecutive frames based on appearance features, such as color,
shape and distance [Zhang et al. 2009; Zhang et al. 2012; Liu
et al. 2013]. They are quite vulnerable to partial occlusions where
the shape of an occluded region may change abruptly. To tolerate
slight appearance changes, topological relationships among regions
within each frame are also considered [Madeira et al. 1996; Qiu
et al. 2005; Sykora et al. 2005]. However, these methods still
suffer from their local nature where region correspondences are
only analyzed between two frames. Therefore, they fail to detect
global region correspondences when regions are similar/identical,
partial/complete occluded, or split/merged over time. In this paper,
our method also takes regions as primitives, but we explicitly
model region motions and globally optimize correspondences of
all involved regions simultaneously over the whole sequence. This
allows us to infer region correspondences in various complex
scenarios.

3 Overview

Given an animation sequence (Figure 3(a)), we first extract and
label regions for each input frame using a cartoon-tailored region
extraction method [Liu et al. 2013] (Figure 3(b)). Our goal is
to identify corresponded regions over the whole sequence in a
semantically sensible fashion. For example, in the last row of
Figure 1, corresponded regions are color-coded with the same color
throughout the sequence.

With appearance and motion terms (Figure 3(d)&(e)) defined in
the following section, we form a network flow graph (Figure 3(f)).
There are a source and a sink in this graph. Each flow corresponds
to a trajectory of a region, and must start from the source and
end at the sink. Unlike traditional network flow formulations
where each node represents a region, we propose to formulate the
correspondence relationship between every pair of regions (from
any two frames) as a node. The costs associated with nodes
and edges encode appearance similarities and motion smoothness,
respectively. By allowing region correspondences between any two
frames (consecutive or non-consecutive), we are able to handle
complete occlusions. By globally optimizing motion trajectories,
we are able to distinguish regions with similar appearances but
different semantics. Furthermore, the formulated network flow
problem can be solved via the k-shortest path algorithm [Yen

1971] which already supports optimal flows to split and merge.
Therefore, we can naturally handle region splitting and merging.
The result of this network flow optimization is a set of optimal
flows, corresponding to the optimal motion trajectories of all
regions throughout the whole sequence. Our global optimization
of region correspondences is detailed in Section 5.

To validate the effectiveness of our method in estimating
region correspondences, we present several challenging real-world
animation sequences and our results in Section 6.

4 Appearance and Motion Terms

Before describing our graph formulation, we first introduce
the appearance features and the motion model utilized. Our
correspondence estimation relies on both appearances and motions.

Color and Shape Similarities To measure the appearance
similarity of two regions, we utilize both color and shape features.
The color dissimilarity of two regions, a and b, is defined as the
difference between their color histograms:

o(0)ll, (1

Here, o(a) and o(b) are the color histograms (24 bins in our case)
of regions a and b respectively. [|-||, is the L2 norm operator.

C(a,b) = llo(a) -

To measure the shape similarity between two regions, we adopt the
inner-distance shape context (IDSC) descriptor [Ling and Jacobs
2007] because it is more effective in capturing partial structures
(higher tolerance to partial occlusions) than the classical shape
context descriptor. For completeness, we briefly present the IDSC
descriptor here. Given two regions a and b, the contour points
of the regions are first extracted and denoted as p{, p3,--- and
pe.p5, -, respectively. Here, pj is the i-th contour point of
region a. Then we compute the shape context histogram (60 bins in
our case) for each contour point for both regions. The local shape
dissimilarity between two contour points p; and p? on regions a
and b respectively is measured as

s(p!.p)) 22 ha

where hj and h;’- are the shape context histograms of p§ and pé’-,
respectively. h{ (k) is the value of the k-th bin in h{. If the local
shapes of p§ and pl} are similar, their shape context histograms h
and hl} should also be similar, and their local shape dissimilarity
s(pf, p?) should be small, and vice versa.

2

— hj(k))

(2)
+ hb (k)

The global shape dissimilarity between two regions is computed
by first finding an optimal alignment between the contour points
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Figure 4: Network flow formulation. (a) Input sequence. (b)
Constructed complete network flow graph of (a). The background
region is neglected. The red edges indicate the optimal flow.

using dynamic programming, and then adding up all local shape
dissimilarities between aligned contour points as

> sf.p)) ©)

{pg,pYYem, s

S(a,b) =

Here, I1, 4 is the set of pairs of all aligned contour points.

Motion Term With IDSC, we then define the motion term
between any two potentially corresponded regions, a and b, from
any two frames. Note that the frames that contain a and b may
be either consecutive or non-consecutive. Analyzing potential
motions between regions from non-consecutive frames allows us
to overcome complete occlusions (even occluded for over more
than one frame). This motion term is defined as the optimal
rigid transformation from a to b such that the transformed a is
optimally matched with b, in terms of IDSC. A rigid transformation
is represented as a rotation R € R?*? and a translation t € R?. The
optimal transformation, {Rq 4, ta s}, from a to b is then computed
as

{Rapstap} = argthnin Z 4)

{pg.phYem, ,

HR~p§1+t—pl]’-
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where I, is the same as in Eq. 3. Note that the estimated
motion may be imprecise if the contour points are poorly aligned.
To make motion estimation more stable, we adopt the random
sample consensus (RANSAC) method to remove unreliably aligned
contour point pairs, and only leave reliable pairs in I, 3.

5 Spatiotemporal Region Correspondence

5.1 Network Flow Formulation

With the defined appearance and motion terms, we can now
formulate this spatiotemporal region correspondence problem as
a network flow optimization, and solve for the global optimal
correspondences of all regions simultaneously. A network flow
optimization is to find an optimal set of flows from a directed
acyclic graph (DAG) with respect to some required constraints.
Firstly, we define two terminal nodes, source and sink (denoted
as S and T'), respectively. Each flow must start from the source
S and end at the sink 7". Then, for every pair of regions a and
b from any two different frames w and v where u < wv, we
construct a non-terminal node n,, in our graph to represent the
correspondence relationship between a and b. If there exists an
optimal flow passing through node n, s, it means that @ and b are
corresponded regions in the optimal solution. This is very different

from traditional network flow formulations which formulate each
region as a node. Note also that we construct nodes for all possible
pairwise combinations of regions from any two consecutive or
non-consecutive frames. This allows us to resolve complete
occlusions. A region in frame w can be directly corresponded to
aregion in frame u + 2 or even further apart in time.

Figure 4(a) shows an example of a three-frame animation, in which
a square moves from left to right. The corresponding network flow
graph is shown in Figure 4(b). There exist three regions altogether
in the three frames, and three non-terminal nodes are formed. Note
that, we neglect the background region for illustrative simplicity
in Figures 4-7. But in practice, the background region(s) is(are)
also accounted during actual computations. Next, for every pair
of non-terminal nodes n,,, and n; . where the second region of
the first node and the first region of the second node are identical,
we connect them with a directed edge pointing from ng., to np c.
Furthermore, for each non-terminal node n, ;, we create a directed
edge from S to n,,, and another edge from ng  to 7.

A flow is a sequence of linked nodes starting from the source node
S, passing through the non-terminal nodes, and ending at the sink
node T, e.g. S — nap — np, — T. Each flow in the final
solution corresponds to a region trajectory over the whole sequence.
If this flow goes from n, 3 to np ., it means that regions a, b and ¢
are temporally corresponded. To determine the optimal flows, we
then associate a cost to each node and each edge.

Node Cost We assign each non-terminal node n,,, with a node
cost D(ng,») which suggests how likely regions a and b from
frames u and v respectively are corresponded. It accounts for both
appearances and motions, and is defined as a function of color
dissimilarity, shape dissimilarity, inter-frame motion, and frame
distance as

D(nap) = (Cla,b) + A\18(a,b) + AaM(a, b)) - G(v —u) (5)

where C(a,b) and S(a,b) are the color and shape dissimilarities
defined in Eq. 1 and Eq. 3 respectively. If two regions are quite
similar in terms of color and shape, the node cost should be small.
A1 and A2 are weighting factors and empirically set to 0.01 ~ 0.1
and 0.7 ~ 1.2 respectively. Inter-frame motion

M(a,b) = [[Qapll, + [taslly ©)

measures the local transformation between a and b where Q, p is
the rotation angle of the estimated rotation matrix R, defined
in Eq. 4, tq,5 is the estimated translation vector defined in Eq. 4,
and |[|-||; denotes the Li norm operator. Intuitively, if two
regions remain unchanged temporally, it is very likely that they are
corresponded. G(z) is a frame distance function defined as

G(z) = a” @)

which penalizes the correspondence choice if a and b are coming
from two further apart frames. With this formulation, we favor
correspondences of regions from temporally closer frames and
encourage the optimal trajectories to pass through as many frames
as possible, while we are still able to handle possible complete
occlusions. In fact, G(z) can be any monotonic increasing
function. We empirically select the exponential form and set « to
100 for all our experiments.

Edge Cost We associate each edge that links ng, to np . With
an edge cost V(nq,p, np,c) to ensure smoothness of object motions.
Since objects in animations are very likely to move with constant
velocities, we model the motion smoothness among a sequence of
regions as the change in velocity (in some sense, acceleration):

V(na,b7nb,c) = HVQa,b,c”l + HVta,b,C”l (8)
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Figure 5: Occlusion. (a) Input sequence. (b) Network flow graph
of (a). The optimal flows are color-coded in the same colors with
corresponded regions.
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can be regarded as angular acceleration and acceleration normalized
by frame distance (time), respectively. u, v, and w are the indices
of frames containing regions a, b, and c, respectively. In other
words, if the transformations (motions) remain unchanged (or the
acceleration is zero) among a sequence of regions, there is a higher
chance that these regions are corresponded. For each directed edge
that links S and n4 5 or ngp and T, we associate it with an edge
cost as:

V(S,nap) = Glu—1) (1)
V(nas, T) G(N —v) (12)

Here, u, v are the indices of frames containing a and b respectively.
N is the number of frames of the input sequence.

Optimization Based on the formed network flow graph, the
overall energy function is defined as

S Y pan)+ >

J "a,b€J (na,bvnb,c)eJ

A3V (Nab, Nb,c) (13)

where J indicates an optimal flow, and A3 is a weighting factor
and set to 1.0 ~ 2.0 empirically. This network flow problem
can be solved via the k-shortest path algorithm [Yen 1971] by
minimizing the overall energy. This energy minimization is solved
via an iterative approach. One shortest path is found during each
iteration. The optimization terminates until enough amount of
shortest paths have been found so that each region appears in at
least one path. The result of this global optimization is a set of
optimal flows (paths) where each flow corresponds to a sequence
of corresponded regions. Every region, that visually appears in the
animation, should have been accounted for its correspondences.

5.2 Case Studies

We now explain how the network flow optimization acts when
tackling three challenging scenarios, including occlusions, identical
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Figure 6: Multiple identical regions. (a) Input sequence. (b)
Network flow graph of (a). The orange and brown edges visualize
two optimal flows.

(b)

regions, and region splitting. In each case, we show a meaningful
toy example and the computed optimal flow(s), to illustrate how our
model tackles these challenges.

Occlusion Figure 5(a) shows an example where the moving
blue triangle is completely occluded by the orange square and
disappears in frame 2. Even if the triangle reappears in frame
3, it is still partially occluded. Since we construct nodes for
all possible correspondences over the whole sequence, there
exists the node n,. in our graph that represents the potential
correspondence of regions a and e. Even though the triangle
is no longer in triangular shape in frame 3, the appearance
dissimilarity between a and e (node cost of n, ) is still low since
the IDSC descriptor can tolerate a certain level of partial occlusions.
Figure 5(b) plots the corresponding graph with the optimal flows
(region correspondences) color-coded in the same colors with the
corresponding regions. While our model penalizes long durations
of complete occlusions with the penalty function GG, we can still
effectively find the correspondence between a and e.

Identical Regions When an animation contains regions of
identical appearances (same color and shape), appearance features
are no longer effective in tracking regions. In this case, the
motion term in our model plays a more important role in finding
correct region correspondences. Consider the example shown in
Figure 6(a) where two identical orange squares move together
from left to right with the same speed. If only the appearance
terms are considered, it is very likely that regions a and b are
corresponded while regions ¢ and d are corresponded, because
of their spatiotemporal proximity. However, with the motion
smoothness requirement defined in our model, the above solution
will be rejected because of the sudden appearance of ¢ in frame
2 and e in frame 3, as well as the sudden disappearance of b in
frame 3. Figure 6(b) plots the complete network flow graph and the
two optimal flows computed. We intentionally color-code the two
optimal flows in different colors for illustrative purpose. The orange
flow corresponds to a — ¢ — e and the brown flow corresponds to
b—d.

Region Splitting Because of occlusions, it is possible that a
region is split into multiple sub-regions (e.g. Figure 7(a)). While a
is split into sub-regions d and e, the IDSC descriptor still returns
low node costs for both n,,q and ng,e since both a,d and a,e
are partially matched. At the same time, b and c are identical in
appearance. All these factors lead to the optimal flows presented in
Figure 7(b).
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Figure 7: Region splitting. (a) Input sequence. (b) Network flow
graph of (a). The optimal flows are color-coded in the same colors
with corresponded regions.

6 Results and Discussions

To validate the effectiveness of our method, we apply it to
various styles of challenging animation sequences. While the
animations in Figures 1, 9, 11 and 12 are in oriental style,
the animations in Figures 10, 13, and 14 are in western style.
Besides, we also demonstrate the applicability of our method on
gray-scale animations (Figure 10) and animated line drawings
(Figure 14). We intentionally choose challenging shots which
contain partial/complete occlusions, multiple similar objects,
region splitting and merging, or change of region ordering.

Comparisons with Existing Methods In our experiments,
we choose the state-of-the-art EXCOL [Zhang et al. 2012]
for comparison. Most other existing methods perform local
correspondence estimation similarly to that in EXCOL. While our
method is fully automatic, EXCOL requires manual input when
correspondences of some regions cannot be determined. To be fair,
we minimize the user input to EXCOL while allowing it to process
all frames. We choose the best results we can obtain from EXCOL
to compare with ours. For better visualization, we also try to use
the same colors for regions in EXCOL and our results whenever
possible.

Figure 9(a) shows snapshots from an animation sequence where
an old lady is walking behind a column. In this sequence,
both partial and complete occlusions occur. Without the global
analysis of region correspondences, EXCOL fails to find the
corresponded regions before and after the occlusion (Figure 9(b)).
In contrast, our global optimization method can correctly identify
region correspondences even after the occlusion (Figure 9(c)).
The gray-scale cartoon “Popeye” in Figure 10(a) shows a typical
walking sequence. Identifying its region correspondences is
well-known to be challenging because of the continuous partial
or complete occlusions, as well as similar appearances of left and
right legs. The left leg is even split into two regions in the last
snapshot. Even though the input sequence lacks chromaticity and
the movement of the character is vigorous, our method can still
accurately estimate the region correspondences (Figure 10(b)).

Figure 11(a) shows an animation of two moving dishes
holding multiple similar objects (beans and hams). EXCOL
fails to correctly distinguish these similar-appearance regions
(Figure 11(b)), while our method correctly estimates the
correspondences (Figure 11(c)). A more complicated example
is presented in Figure 1. Here, the coupling rods of the train

wheels are occluded and split into sub-regions. The wheel spokes
which are almost identical further pose difficulty in correspondence
determination. Again, our competitor fails to recognize that the
split sub-regions are actually the same coupling rods semantically,
and gets confused by the similar spokes. In sharp contrast,
our method can successfully identify the region correspondences
regardless of rotation, similar-appearance regions, and complex
occlusions. Two more complicated sequences are shown in
Figure 12 and Figure 13 respectively and one colorless sequence is
shown in Figure 14. Our method obtains satisfactory results in all
tested cases, with a small amount of errors. In general, the failure of
our competitor is due to their local correspondence determination.
Our method, on the other hand, can resolve the above challenges
via a global optimization and an explicit motion model.

In Figure 8(a), the ordering of objects changes over time. Note
that how our competitor is confused by the two legs and two shoes
in Figure 8(b). Our method is robust to such ordering changes,
even though depth ordering is not modeled in our formulation
(Figure 8(c)).

To compare quantitatively, we measure the correctness of
correspondence for both EXCOL and our method by comparing
the estimated region correspondences with groundtruth. The
groundtruth of region correspondences is obtained by manual
labeling. Please refer to the supplementary materials for
groundtruth comparisons. To measure the correctness of
correspondences, we first measure the pairwise correctness for
every two frames u and v (not necessarily consecutive) by counting
the number of pixels (i.e. regions weighted by their areas) in u
that are correctly corresponded in v. This count is normalized,
by the total number of pixels, to the range of [0,100%]. The
overall correctness is simply the average of pairwise correctness
values of all possible frame pairs. Intuitively, an overall correctness
of 100% means all correspondences are correctly identified. On
average, our method obtains an overall correctness of 95.82%,
while EXCOL obtains 82.48%. However, because images are very
likely to be dominated by background regions, a clearer picture of
correctness can be obtained by ignoring background pixels during
the measurement. In this case, we achieve 92.26% and EXCOL
achieves 53.50%. Again, our method outperforms EXCOL in
terms of correctness. We tabulate the correctness (with and without
background pixels accounted) of each tested case in Table 1.

Implementation Details When the animation sequence is very
long, the number of nodes, the number of edges and the processing
time may grow significantly as we account for all possible pairs of
regions in our network flow graph. For practical implementation,
we propose two strategies to boost the efficiency of our system. The
first strategy is “pruning,” in which we remove nodes and edges
from the constructed graph before optimization if the associated
node costs or edge costs are extremely large. Formally speaking, for
each node nq », if its node cost D(nq,p) is larger than G(v —u)Op
where ©p is a user-defined threshold, it will be removed from the
graph together with its connected edges. Besides, for each edge
that links 74, t0 np,¢, if its edge cost V(nq,p, np,c) is larger than
a user-defined threshold ©y, this edge will be removed from the
graph. Empirically, we set ©p € [1.0,2.0] and ©yv € [0.5,1.0].
This can remove a large set of nodes and edges which are definitely
not inside the optimal paths.

The second strategy is a hierarchical optimization which gradually
solves a whole sequence from local to global. To do so, we first
solve Eq. 13 for every three frames and remove nodes and edges
that are not in the optimal paths. Intuitively, region trajectories that
are locally not optimal cannot be globally optimal either, so they
can be removed in advance. Then we continue to enlarge the local
sequence from three frames to five frames and perform similarly.



baclv<vg1rt(l)lun 4| Figl | Fig8 | Fig9 | Figl0 | Figll | Figl2 | Fig.3 | Fig.l4 | Average

EXCOL Yes 5578% | 97.77% | 94.38% | 85.22% | 95.82% | 88.07% | 88.38% | 54.38% | 82.48%
No 55.78% | 63.81% | 70.66% | 45.22% | 62.82% | 39.49% | 35.82% | 54.38% | 53.50%

Ours Yes 93.62% | 100.0% | 98.67% | 93.64% | 99.13% | 94.14% | 90.14% | 97.21% | 95.82%
No 93.62% | 100.0% | 98.13% | 86.21% | 98.59% | 81.07% | 83.26% | 97.21% | 92.26%

Table 1: Correctness of correspondence.

We repeat such process until the local sequence covers the whole
animation sequence. We tabulate the number of nodes and edges at
three stages (originally constructed graph, after naive pruning, and
after hierarchical optimization) in Table 2.

Running Time All our experiments are conducted on a PC with
Intel Core 17-4710 2.5GHz, 16GB RAM. The computational time
for all examples in the paper are summarized in Table 2. The
precomputation time includes the computation of appearance and
motion terms between every two regions in two different frames
(without acceleration). The optimization is accelerated by the
proposed two strategies (pruning and hierarchical optimization).
According to our experiments, pruning can reduce about half of
the optimization time. A detailed comparison can be found in
Table 2 (last two rows). We also found that the hierarchical
optimization is extremely important in making the optimization
tractable. Without the hierarchical solution, even the short sequence
in Fig. 8 takes more than 4 hours to optimize (comparing to 31
seconds after the proposed acceleration). This is due to the large
scale of the network flow graph where the number of nodes is
exponentially related to the number of regions and the number
of frames. Our current system is implemented using MATLAB
without any GPU acceleration. We believe that the running time,
especially the precomputation time, can be significantly reduced
with the parallelization of GPU.

Limitations Since our method is a region-based correspondence
estimation method, it fails if region segmentation is poor. For
example, the contour lines of regions may be blurry because of
some special effects (e.g. glare, fog, etc) or compression artifacts
(e.g. JPEG blocking artifacts), so two semantically independent
regions may be erroneously merged into one region during the
segmentation phase. Currently, we can only ask users to fix the
segmentation via an interactive tool. Besides, our current motion
term is a rigid transformation. It may not work well when the
deformation or the movement of regions is too vigorous so that
the motion term cannot be well represented by a rotation and a
translation. Our method may still be confused if the scene contains
a vast number of moving, similar-appearance objects which are
very close to each other. This confusion is caused by vigorous
motions of cel animations as well as the imprecise motion model.

Moreover, while our system can handle partial or even complete
occlusions, our system may still fail when the range of the occlusion
is very long. In order to handle long-range occlusions, we may
modify the frame distance function (Eq. 7) by setting « to a smaller
value than that we used in experiments. But consequently, if o
becomes small, the penalty of region correspondence from two
further apart frames becomes small. This may lead to incorrect
correspondence path where one or two frames are skipped. For
example, we have three corresponded regions a, b, and c in three
consecutive frames. With a small «, it may become that the
path S — ng. — T is more preferred than the optimal path
S — ngp — np,e — 1. Further study is needed in designing
a more sophisticated frame distance function to tolerate long-range
occlusions.

(a) Input

RTTe7
p17777
pI1T77

Figure 8: “The legs.”
(1280 x 720).

(b) EXCOL

(c) Ours

The input sequence contains 11 frames

7 Conclusion

In this paper, we propose an optimization-based method to estimate
spatiotemporal region correspondences over an animation sequence
based on both region appearances and motions. We formulate
the problem as a network flow problem and solve for the global
optimum using the k-shortest path algorithm. The existing
methods are easily confused by some challenging scenarios, such
as partial/complete occlusions, multiple similar/identical objects,
and region splitting/merging. In contrast, our method remains
robust to all these tough scenarios and obtains convincing and
consistent results, thanks to the explicit motion model and the
global optimization to simultaneously infer all optimal region
correspondences.

Our current formulation of motion term is rather crude (rigid
transformation), and a more sophisticated motion model may
further improve the correspondence estimation when the motion
depicted in the animation is more complex. Currently, we do not
know the hierarchical relationships among regions. We believe it
is possible to utilize motion trajectories to deduce the hierarchy of
regions. For instance, consider an example of a walking person,
the trajectories of arm regions should be close to that of body
regions, but superimposed with higher-frequency oscillations. With
the obtained region correspondences, it should also be interesting to
explore various applications.
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